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The renormalization-group transformations for a square Ising spin lattice are evalu-
ated in a four-cell-cluster approximation to obtain the critical surface in a three-dimen-
sional space of spin-interaction parameters. Agreement is found with known critical
curves, particularly Baxter's analytic solution.

The renormalization group" has been applied
with considerable success to evaluate the critical
exponents for phase transitions of Ising spin
systems. Recently we derived from the renor-
malization transformations an infinite series ex-
pansion for the free energy, ' and we showed in
particular that this series gives an expression
for the coefficients of the power-law singularities
which had previously not been determined. Ex-
tending the cell-cluster approximation of Nie-
meijer and van Leeuwen, ' we evaluated as an
example the renormalization transformations for
a square lattice of sixteen Ising spins, and found
that this series leads to thermodynamic functions
in good agreement with Onsager's exact solution. '
In this note we present the results obtained in
this approximation for the critical surface in the
subspace of nearest-neighbor interactions K„
next-nearest-neighbor interactions K„and four-
spin interactions K,. This surface is of consider-
able physical interest because it determines the
onset of critical transitions including not only
ferromagnetic and antiferromagnetic transitions,
but also certain ferroelectric transitions, in
virtue of the equivalence of a special case of the
eight-vertex model with this Ising spin system. "
In particular; we find that the intersection of the
critical surface with the plane K, = 0 is in good
agreement with the Baxter critical curve, ' while
the corresponding intersection with the plane K,
= 0 agrees with the critical curve obtained by a
series-expansion method by Dalton and Rood'
for K, ~ 0. However, their series expansion fails
in the interesting domain K, & 0 and E, - 0 of
competing ferromagnetic and antiferromagnetic
eouplings, for which new results are given here.

To construct the renormalization transforrna-
tions, we divide the lattice into Kadanoff cells
containing four spins S;=+1, i=1, 2, 3, 4, located
at the corners of a square. Each cell has then
sixteen configurations which can be labeled by
the set (S,S,S,S,). We assign a spin variable S

= + 1 to each cell according to the following rule:
The eight configurations (++++) (-+++), (+ —++),
(++ —+), (+++ —), (++ —-), (+ —+ —), and (+ ——+)
correspond to cell spin up, S=+1, while the re-
maining eight configurations obtain by flipping
all the Ising spins correspond to cell spin down,
S= —1. For the ten configurations with QS;+0,
this prescription is the same as that given by
Niemeijer and van Leeuwen' for triangular cells,
in conformance with Kadanoff s intuitive ideas.
For the six configurations with QS, =O, this
choice is one of four possible ways to assign
three configurations to 8=+ 1 in such a way that
the remaining three configurations for 8= —1 are
obtained by flipping the cell Ising spins. These
four choices are all equivalent for clusters of a
finite size arranged in a square lattice. The
smallest cluster satisfying this requirement is a
4 &4 square Ising lattice which we have consid-
ered in detail.

%e have evaluated numerically the renormaliza-
tion transformations K„'= E (K„K„K,), o. = 1, 2,
3, and have found a single unstable fixed point at
K,*=0,300, K,*=0.0871, and K,*= —0.00126
which determines the critical behavior, and two
stable fixed points at K =0 and at K -~, which
determine the asymptotic end point of transfor-
mations above and below the critical surface.
This surface, which is defined by the subset of
points which are mapped into the unstable fixed
point, is shown in Fig. 1 for the domain —2

K] K3 & + 2 and is s een al ong the dire ction E, = 1,
K, =1, and K, = —1. It consists of two branches
which are joined in the limit Ay + ~ A2 2 IKyt,
with K, fixed. Special points E 4A on this sur-
face map directly into the unstable fixed point,
i.e., K = E„(E*), and therefore we call them
fixed point images bec-ause these points play an
analogous role to fixed points in describing the
critical transitions nearby. The symmetry of the
critical surface and the existence of these fixed-
point images can be understood from the sym-
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FIG. 1. Critical surface in the range —2» K&, Ã3
» +2, seen along the direction K&

——1, K~ =1, and E3
=- 1.
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metry of the free energy under the transforma-
tion K,—-E„K,-K„K3-K„and the transfor-
mation E2 K2p K3 K3 with A, = 0. Actually,
these symmetries are only approximately satis-
fied by our renormalization transformations for
a four-cell cluster. It is possible to implement
these symmetries exactly by other choices of
cell spin assignments. However, we have found
in these cases at least one cell configuration with

QS, 0 0 which has the sign of QS,. opposite to .

that of the cell spin, and the agreement of the
corresponding critical values with known results
is not very good.

The intersections of the upper and lower branch-
es of the critical surface with the plane K, =0 are
shown by circles in Fig. 2 and compared with the
critical curve exp(2A', ) =

i sinh2K, l
' obtained by

Baxter for the eight-vertex model. ' The crosses
in Fig. 2 show the intersection of the upper
branch of the critical surface with the plane K,
= 0, which seems not to have been calculated be-
fore. It appears that Baxter s critical curve may
also be applicable in this case. It has been
pointed out' that Baxter's analytic solution im-
plies a continuous line of fixed points depending

FIG. 2. Intersection of the upper and lower branches
of the critical surface with the plane && ——0, shown by
circles, and intersection of the upper branch with the
plane K&=0, shown by crosses, as a function of K3.
The solid curve is Baxter's critical curve exp(2Z3)
= [sinh2K2i

on the value of K„while in our approximation
we found a unique unstable fixed point. If we
consider the subset of transformations K„' = E (K)
for a=1, 2, keeping K3 fixed, we found the de-
pendence of the critical exponent cy on K3 for ——,

'

A 3
& 0 in r eas onabl e agre em ent with Baxte r' s

result, but not for other values of K3. Although
this approach may not be self-consistent, it does
suggest that a larger size cluster may lead to
better results.

Finally, we have evaluated the dependence of
the critical temperature T,(n) on the ratio n
=K,/K, for K, =O and K, &0 from the intersection
of the critical curve with the plane %3=0. The
results are shown in Fig. 3 for —1 ~ e &1, where
we include for comparison the values obtained by
Dalton and Wood for 0 & e &1.' In the interesting
domain n ~0, where the series-expansion meth-
ods fail, we find that T,(o) has a cusp and vanish-
es at a= —2. At this value of cv the ferromag-



VOLUME 33) NUMBER 16 PHYSICAL REVIEW LETTERS 14 OCTOBER 1974

2.0—

c &Ct)

Tc (0)

1.0—

as n- ——,'. For —0.494 & g & —0.470 we find an
excellent fit to T,(a)/T, (0) for a=0.1995 and b
= 0.1241.
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Groeneveld for an introduction to the Baxter solu-
tion of the eight-vertex model, and Dr. H. P.
Oudshoorn for assistance in obtaining the com-
puter display of the critical surface.
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FIG. 3. The critical-temperature ratio T~(a)/T~(0)
as a function of o. = K~/K, for K& & 0, K3 ——0, and —l~ n
-+1. Circles correspond to values obtained by Dalton
and Wood (Ref. 9) for 0» a ~+1.

netic ground-state energy of the Ising spin lattice
with only nearest-neighbor and next-nearest-
neighbor interactions is the same as the antifer-
romagnetic ground-state energy with respect to
the next-nearest-neighbor sublattices. The cusp
can also be understood because these ground
states are only degenerate with respect to a
change of sign of all the Ising spins. It can be
shown that for large values of K, we have ap-
proximately K, = —2I(, ——,'a exp(- bK, ), which
leads to the limit in[(1+ 2 n)/a]T, (n)/T, (0) = —bK, (0)
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It is shown that spin waves exist in the hydrodynamic regime in superfluid He. Hydro-
dynamic equations ruling these spin waves are derived. Spin waves are studied in the
axial (Anderson-Brinkman-Morel) and in the isotropic (Balian-Werthamer) states.

It has been pointed out recently' that spin
waves must exist in superfluid 'He. The reason
is that spin-density fluctuations are coupled to
the fluctuations of the direction of the order pa-
rameter in spin space; so that spin waves are,
in some sense, driven by the fluctuations of the
order parameter. This makes it possible for
spin waves to exist in superfluid 'He, even with-
out the presence of a magnetic field.

These spin waves have been studied' in the

collisionless regime within the framework of the
weak-coupling BCS theory with p-wave pairing.
The resulting formulas are complicated, and

must, except in some limiting cases, be studied
numerically; the formalism is not simple. More
important is the fact that the frequency window
for this collisionless regime, 1/To«a «6/h, is
rather small: roughly 1 order of magnitude only,
around 100 MHz. This is very inconvenient for
experiments.


