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A general way is demonstrated to derive Bhcklund transformations for nonlinear par-
tial differential equations that are solvable by the inverse scattering method in the scheme
of Ablowitz, Kaup, Newell, and Segur.

Recently, Ablowitz ei al. ' discovered a general
scheme for finding the set of nonlinear partial
differential equations that are solvable by the in-
verse scattering method. This paper will show
how one can derive the 85,cklund transformation
from the auxiliary equations for the inverse
problem. ' This derivation provides the basis
for unifying the two different approaches to solv-
ing these nonlinear equations.

Ablowitz et al. ' have found that the integrability
conditions for the systems of linear partial dif-
ferential equations

Vl „+f$V~ =qV2, . V2~ —Z/V2

vg g
—Avl + Bv2q V2 g

—CVg —QV2

are exactly those equations which allow soliton
solutions solvable by the inverse scattering meth-
od. The integrability conditions are

A„=qC —rB, B,+ 2ipB =q, —2Aq,

C„-2zgc = r, +2Ar.

Finite expansions of A, B, and C in terms of g

reduce the problem to specific equations of inter-
est, for exa.mple, Korteweg —de Vries (KdV), '
modified Korteweg-de Vries (mKdV), ' sine-Gor-
don, ' and nonlinear Schrodinger equations. '

Equations that are solvable by an inverse scat-
tering problem are found to be also solvable by
Backlund transformations. " But till now only
two such transformations have been found. "
They are derived independently from a tedious
ad koc elimination procedure (or simply from a
guess). I present in this section a unified way of
finding them from the inverse problem, and
therefore, provide a basis for the statement that
corresponding to each inverse problem there

exists a BKcklund transformation.
From Eqs. (1)-(3), we can easily get a system

of equations for the quantity u —= v, /v, :

Q„=2sgu —m +q, u, = au —Cu'+ B. (4)

This equation is very important. I will demon-
strate in the following by showing examples that
all Backlund transformations can indeed be re-
duced to (or derived from) this set of Riccati
equations. A specific identification of u as a
functional of q and q'will provide a BKcklund
transformation to a particular differential equa-
tion. These Backlund transformations can be
divided into different classes.

Class I.—For the first class z= const= —2.
Equation (4) then becomes, with i g =k,

Q = —2ku+2Q +q Q, = au —Cu'+ B. (5)

A =4k'+ 4kq —2q„,

B = —4k'q + Mq„- q„„—4q',

C = 8k'= 8q.

(6)

If we eliminate q in Eq. (5) we get an equation
for u,

u, —24u'u„+ 24kuu„+ u„„„=0. (7)

This is a mixed KdV-mKdV equation. Equation
(5) provides a O'Acklund transformation between
solutions of the KdV equation and Eq. (7). In par-
ticular, if k =0, Eq. (7) reduces to the pure mKdV
equation and Eq. (5) becomes the famous Miura
transformation. Now, we can see that if (u, k)
satisfies Eq. (7), then (-u, -k) also satisfies

The simplest example in this class is the Korte-
weg-de Vries equation, ' q, +12qq„+q, „„=0. Fol-
lowing Ablowitz et al. , we identify A., B, and C
to be

925



VOLUME )$, NUMBER 15 PHYSICAL REVIEW LETTERS 7 OcTQBER 1974[

Eq. (7). This gaugelike invariance of Eq. (7) tells us immediately that a second solution q exists for
the KdV equation, such that

—Q = —2kB+ 2Q +q

—u, = —2A(q', -k)u —C(q', —k)u'+B(q', -k)
From Eqs. (5) and (8), we get

2u„=q -q',

q+q '= 4ku —4u'

(8a)

(8b)

(9a)

(9b)

2u, = 2u(A + A ') —u'(C —C ') + (B —B '),

0=2u(A -A') —u'(C+ C')+ (B+B').

Two different forms of B'aeklund transformations can be derived from Eq. (9).
(i) Let q =w„; then u=-,'(w —w'+k), and we get the B'acklund transformation between w and w'.

(w+w ')„=k' —(w '-w)',

(w —w'},= 2A(w —w'+k) ——,C(w -w'+k)'+ 2B,

where u satisfies the equation

Zg~+6m x +~xxx=o

(ii) Solving for u from Eq. (9b), we get

u = —,'(2k k [4k' —4(q+ q ')]' ').

(10a)

(10b)

(11a)

(11b)

Because Eq. (9b) is a local equation, we can choose a constant x, such that q would be a continuous
soliton solution and then

u = ,(k +[k' —(q+ q ')]-'"H(x —x, —4k'i) j, (12)

where H is the Heaviside step function. Substituting this into Eq. (9a) we get the Backlund transforma-
tion between q and q

' directly,

(q + q ')„=+ 2(q - q ') [k —(q + q '}]' "&(x—x, —4k'i}, u
g

= 2Au —Cu'+ B.

I make two remarks here. First, Eq. (10b) is equivalent to Eq. (9a) plus (9b), so that either Eq (10a)
or (8b) with the appropriate u can serve to be the time part of the B'acklund transformation. Second,
the two forms of Backlund transformations, Eqs. (11)and (13), are actually equivalent. I do not wish
the reader to get the wrong impression that the Backlund transformation is not unique.

Class II.—r = —q, if=k/2. In this class, we can also get two equivalent forms of Backlund transfor-
mations. Let us consider two examples.

(a) For the mKdV equation, q, + 6q'q„+q„„„=0,

A = —2k'+kq', B = —k'q+kq -q —2q', C =k'q+kq„+q„„+ 2q'. (14)

Now, eliminating q, we get the following equation for u:
1 1 3 1u = tan~, v, + v„„„+—,v„'+ —,3k'v„sin'v.

This equation also possesses the invariance (u, k) -(+u, +k). It results in the following self-Backlund
transformations for the mKdV equation: (i) v =w ww',

(w +w '}„=k sin(w + w '),

(w +w '), = —2w, 'k sin(w +w ') v 2w„„k cos(w —w ') wk' sin(w + w ') +2k'w„;

(16a)

(1.6b)
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a,nd (ii)

u=(k ~ [k'-(q+q )']'"a(x-x, -k't)]/(q+q'), .

(q +q')„= +(q +q')[k —(q +q') ] ~VI(x —xo —k t}, u~= 2Au —Cu +B.

(b) For the sine-Gordon equation, 2w„, =sin2w,

A= —cos2w/2k, B=C=q, /k.

The equation satisfied by Q is

u =tan-'v, v„,= [1 —k'v, ']'~'sinv.

(17)

(18)

(19)

(20)

It is also invariant under the transform (u, k) -(su, +k). The B'acklund transformations are then (i) v

=SU +SU

(w +w ')„=k sin(w w w '), (w +w '), = k ' sin(w +w ');

and (ii) the same as Eqs. (17) and (18) but with appropriate A, B, C, and H.
Class III. r= —q*—, f= $+irI. In this class

Q~ = —21'+ q+Q + q, Q, = 2gQ —CQ'+ a. (22)

The simplest example is the nonlinear Schrodinger equation, iq, +q„„+2q q =0. For this equation,
we have

A = —2iP+ iqq*, B =+ 2qf+ iq„, C = —2q*f+ iq„*

After the elimination of q and q* in Eq. (22), we get a nonlinear partial differential equation for u and
Q*. It is straightforward to show that this equation for Q is invariant under the gaugelike transforma-
tion

(u, g) -(+u, g*).

Therefore, we have

+Q„=+2i&*Q+q*'Q +q',

+u, = +2A(q', g*)u —C(q', f*)u'+ B(q', r*}

From Eqs. (23) and (25) we have

0 = 4q u+ (q +q ')*u'+ (q v q '),

2u„= —4i $ u+ (q a q ')*u'+ (q + q ').

(24a)

(24b)

(25a)

(25b)

Equation (25b) is not integrable as in the case of the KdV and mKdV equations by the transformation

q =zv„. We get therefore only one form of Backlund transformation for the nonlinear Schrodinger equa-
tion itself:

u = (- 2q~ [4q' —Iq+q'I']'"&(x, -x, + 4gt)f/(q+q'}*,

(q*q').= —2th(q *q')+(q+q') [4n'- lq ~q'I']'"&(x -x.+ 44t),

(q ~q'), = —2i((q ~q')„+ i(q+q')„[4vy' —/q ~q'/']'"a(x —x, + 4)t)+ t(q ~q')(qq*+q'q'*).

(26)

(27a)

(27b)

I remark here that class II is only a special
subclass of class III. That is, when f= —ik/2 is
purely imaginary and q =q* is purely real, the
Backlund transformations (27a) would reduce to
Eq. (18a).

A complex form of the mxdV equation, q,
+ 6qq*q„+q„„„=0, exists as a member in class
III and shares the same spatial part of the Bhck-

lund transformation as the nonlinear Schrodinger
equation; so does the Hirota equation' q, + 6nqq~q
+ o.q„„.„+iPq„„+2iPq'q*=0.

It is demonstrated above that from the inverse
scattering problem defined by Eqs. (1)-(3), Ba,ck-
lund transformations between different classes
of nonlinear partial differential equations can be
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found. The existence of gaugelike invariance for
the equation satisfied by (u, f) makes it possible
to find a self-Backlund transformation for q and

q . These Backlund transformations can be divid-
ed into classes. Equations in the same class
have an identical spatial part of their Backlund
transformations. Their solutions therefore sat-
isfy the same superposition formula. For exam-
ple the mKdV and sine-Gordon equations have the
same superposition formula,

SU3 —S60 kl + k2 SUg —'N2tan-
2

=
&

tan

This formula renders it possible to construct A'-

soliton solutions by algebraic manipulations
only.

Further generalizations to higher-order in-
verse problems of what has been done above is
possible. I will report some examples in another

paper.
The author wishes to thank Professor C. S. Liu

for helpful discussions.

*Hesearch sponsored by the U. S. Atomic Energy
Commission under Grant No. AT{11-1)-3287.

lM. J. Ablowitz, P. J. Kaup, A. C. Newell, and H. Se-
gur, Phys. Rev. Lett. 31, 125 {1978).

~C. S. Gardner, J. M. Green, M. D. Kruskal, and
R. M. Miura, Phys. Rev. Lett. 19, 1095 (1969).

M. Wadati, J. Phys. Soc. Jpn. 34, 1289 (1973).
M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Se-

gur, Phys. Rev. Lett. 30, 1262 (197&).
V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor.

Fiz. 61, 118 {1971){Sov. Phys. JETP 84, 62 (1972)].
G. L. Lamb, Jr. , Rev. Mod. Phys. 48, 99 (1971).

VH. D. Wahlquist and F. B. Estabrook, Phys. Hev.
Lett. 81, 1886 (1978).

R. Hirota, J. Math. Phys. (N.Y.) 14, 805 (197&).

Total Cross Sections of p and p on Protons and Deuterons between 50 and 200 GeV/c*

A. S. Carroll, I-H. Chiang, T. F. Kycia, K. K. Ii, P. O. Mazur, P. Mockett, g

D. C. Rahm, and R. Rubinsteinf
Bxookhaven National Laboratory, Upton, ¹zv Fork 11973

W. F. Baker, D. P. Eartly, G. Giacomelli, 5 P. F. M. Koehler, K. P. Pretzl, ll and A. A. Wehmann
I"e~mi ¹tional Accelerator Laboratory, Batavia, Illinois 60510

R. L. Cool and Q. Fackler
Rockeyfelfex University, ¹zoYork, 1Vew F'oak 10021

(Received 15 July 1974)

Proton and antiproton total cross sections on protons and deuterons have been. measured
at 50, 100, 150, and 200 GeV/c. The proton cross sections rise with increasing momen-
tum. Antiproton cross sections fall with increasing momentum, but the rate of fall de-
creases between 50 and 150 eG/ Voand from 150 to 200 GeV/c there is little change in
cross section.

We have measured p and p total cross sections
on protons and deuterons in 50-GeV/c steps be-
tween 50 and 200 GeV/c. The experiment, which
was carried out in the Ml beam" at the Fermi
National Accelerator Laboratory, used a "good
geometry" transmission technique.

Incident particles were defined by scintillation
counters and identified by two differential gas
Cherenkov counters, ' allowing cross sections of
two different particles to be measured simultan-
eously; in addition, a threshold gas Cherenkov
counter4 could be used in anticoincidence when

required. Contamination of unwanted particles
in the selected p and p beams was always below
o. 1%

The 3-m-long liquid hydrogen and deuterium
targets and an identical evacuated target were
surrounded by a common outer jacket of liquid
hydrogen for temperature stability. ' By contin-
uously monitoring the vapor pressure in the outer
jacket, the target temperature and therefore the
hydrogen and deuterium densities were deter-
mined', density variations were less than 0.07%
throughout the experiment. Target lengths were
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