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where L is the inductance of the circuit. If L
can be made as small as 10 ' H, this time con-
stant = 10 "sec; so the detection system should
be designed to measure the direction of the ini-
tial current in that time interval.

Clearly the experiment is a difficult one, in-
volving the making and breaking of contacts that
serve as weak couples. ' But the difficulties do
not seem insurmountable. It should be worth do-
ing not only from the viewpoint of superseleetion
rules, but also from the viewpoint of getting a
clearer understanding of the reality of the phase
of a disjoint superconductor, not just relative
phases between coupled local regions.

If "phase retention" by a superconductor in
space-time isolation from the sink can be exper-
imentally established, not only the charge super-
selection rule loses fundamental significance,
but the lepton number superselection rule does
also. It is then difficult to conceive that the bar-
yon number superselection rule is more funda-
mental (even though experimenta, lly it would be
harder to test the proposition). One may ask in
that case whether there is any superselection
rule in nature at all. In this connection we wish
to note that the univalence superselection rule
seems to be in a different category. Although in
Ref. 1 gedanken experiments were discussed as
to how the change in phase of a fermion under a
360' rotation may be "measured, " it seems to us
that as long as the connection between spin and

statistics remains valid, operators connecting
different univalent sectors cannot be local ob-
servables without violating causality. Since the

electron field P smeared with test functions lo-
calized in spacelike separated regions do not
commute, g cannot be an observable, whereas
gP can be if the experiment proposed here has a
positive result.
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Ia fact, for large separation C ~C&C2/(C&+ C&), where
C~ and C& are the self-capacitances. Therefore the two
superconductors may be arbitrarily far apart and still
retain the relative phase if their self-capacitances are
both large enough.

Point contact junctions have been extensively studied
since they were first applied to Josephson effect ex-
periments [J.E. Zimmerman and A. H. Silver, Phys.
Lett. 10, 47 (1964)]; we thank T. Bedard and N. Walker
for a discussion of some experimental aspects of such
junctions. Other ways of switching should also be ex-
plored; the arrangement proposed here is illustrative
and may not be the most effective one.
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The results of a study on vacuum polarization, orders n(ge)", yg-3, for large-g sys-
tems encountered in heavy-ion collisions are presented. It is shown that the higher-order
vacuum polarization cannot prevent the 1S1y2 state from reaching the lower continuum, E=-m, c, for some critical charge Z «170. In addition, the stability and localization of
a heliumlike system for Z &Z « is demonstrated.

An interesting application of heavy-ion colli-
sions is to the study of quantum electrodynamics
of strong fields. For short times, at least, sys-
tems with large effective charge Z will be formed
with Zn &1. In the strong fields of such systems,
highly relativistic electronic bound states are ex-

pected to occur with binding energies B exceed-
ing the electron rest mass m„and for some crit-
ical charge, Z«-170, the 18», state is expected
to reach the lower continuum with B=2m, .' For
Z &Z«, it has been predicted' that spontaneous

pair production will occur with the subse-
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quent capture of two electrons into a tightly bound
heliumlike state and the ejection of two positrons
into continuum states. These predictions have
been based on solutions of the Dirac equation for
finite-size nuclei in which radiative corrections
such as vacuum polarization (VP) and the Lamb
shift are ignored. For these predictions to be ap-
plicable to heavy-ion collisions, it is essential
to show that radiative corrections are indeed neg-
ligible for large Z -Z„and thus cannot prevent
the 1S,&, state from reaching the lower continuum.
Several qualitative arguments" and a model cal-
culation based on effective limiting-fieLd Lagran-
gians' suggest that the effect of VP does remain
small up to Z«. Yet a complete quantum electro-
dynamic calculation had not been carried out to
all orders in Zo. . The purpose of this Letter,
then, is to present the results of a numerical cal-
culation of the higher-order VP, orders n(Zn)",
n ~ 3, based on the methods of Wichmann and
Kroll. ' The results confirm that VP remains a
small perturbation even up to Z „.

Although the effect of higher-order VP is al-
ways much less than that of the first-order (Ueh-
ling) potential in atoms with Z ~ 100, the results
of Wichmann and Kroll' for a point nucleus show
that the size of the higher-order VP increases
sharply near Zn =1. If the VP charge accumulat-
ed at the origin for orders a(Zo. )", n~ 3, is de-
noted by QwK", then while Q~K" is finite and
much smaller than the nuclear charge when Zn
= 1 (I Q~K" I = 0.05/ e I «13"|le l), dQwKS'/dZ = —~
at Ze =1. Furthermore, the infinite slope of
Q~K" can be seen to come from the lowest —an-
gular-momentum [k =+ (j+ —,') =+ I] contribution to
the VP density, The higher-angular-momentum
(lkl ~ 2) contribution to QwK" is seen to vary
smoothly past Zn =1 until Zn =2, where the Ikl
= 2 contribution becomes singular. Of course,
these singularities in the VP charge density arise
because of the assumed point structure of the nu-
cleus. Nevertheless, these results indicate that
we may expect a rapid increase in the higher-
order VP for Zn &1 when the finite size of the
nucleus is taken into account. Furthermore, the
fastest growing part should be that due to the low-
est-angular-momentum (I k I = 1) electron loops.
Another important property that can be deduced
from the results of Ref. 5 is the relative size of
the 1k' = 1 to the I kl ~ 2 contributions to the VP
charge density. The I k I - 2 contribution was
found to be always less than 10% of the I ki = 1

contribution for orders n(Z )",on~ 3, for all Za
~ 1." Therefore, a good approximation in the

pwe = 2lel 4&s,(2 + pv p ~ (2)

which is equivalent to the addition of a counter-
clockwise contour around the 1S pole to Cp in Fig.
1. The sum of these contours may then be de-
formed to CH, . For Z & Z„, then, pvp and pH,
are computed via a contour integral along paths
C, and CH, , respectively (in units of IeI).

For Z &Z „, the 1S», pole moves off the phys-
ical sheet through the branch point of the lower
continuum. Since the vacuum around the bare
nucleus can then decay into a heliumlike state
plus two free positrons, '' it is natural to rede-
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FIG. 1. Singularities of the Green's function in the
complex energy plane and contours Co, CH, , and I giv-
ing the VP and heliumlike charge densities in units of
le I.

calculation of higher-order VP, relevant for
heavy-ion collisions, is obtained by calculating
the Ikr=1 contribution exactly for finite-size nu-
clei while neglecting the l k l

~ 2 contribution. In
this way the dominant and fastest growing part of
the VP density is calculated exactly while leaving,
in the final results, an overall uncertainty of less
than 10%%uo due to neglect of the t kl ~ 2 contribution.

The calculation of the VP density, pvp, in-
volves an energy contour integral of the trace of
the Green's function, TrG, for the Dirac equa-
tion. ' For Z &Z„, the choice of this contour is
clear and is given by C, in Fig. 1. With this con-
tour, pvp is equal to the vacuum expectation val-
ue of the Heisenberg current operator, (OIJ, (x)IO).
Thus to first order in e and to all orders in Zn,
p» can be written formally as

pv. =-'Iel (Z.(.'- 2-0-'),
where (, refer to the positive- and negative-en-
ergy eigenfunctions of the Dirac equation. ' Here
positive energy refers to all eigenvalues greater
than -m, . In particular, the 18„,state is con-
tained in the first sum. The heliumlike charge
density, pH„ is defined as the expectation value
of the current operator for a state of two elec-
trons in the IS,&, state: (2e (IS)lZ, (x)t 2e (1S)).
This density is related to pvp by

922



VOLUME 33, +UMBER ] 5 PHYSICAL REVIEW LETTERS 7 OcTQBER 1974

fine the vacuum to correspond to the heliumlike
state. ' The VP density, p&p, is thus defined to
equal pH, for Z &Z„. While Eq. (2) is no longer
meaningful for Z &Z„, the contour-integral rep-
resentation for p H, around path C H, in Fig. 1 is
still well defined. The charge distribution of the
overcritical vacuum is thus calculated with con-
tour CH, .

The higher-order VP density, p", for k = + 1

and Z &Z„ is calculated by expanding TrG in
terms of radial Green's functions, TrG„, and re-
moving the first-order Green's functions, TrG~'.
Isolating the terms corresponding to k =+ 1, the
contour integral over path C, is performed. In
practice, Co is deformed to the imaginary axis
I, picking up the negative of the residues of all
poles of TrG~-» which lie between zero and —m, .
The negative of those residues are, of course,
the modulus squa, red of the normalized bound-
state wave functions. The calculation of pH, in-
volves adding to the contour integral along I all
but the squares of the 1S,&, wave functions with

m, &B&2m, .
In addition to ps', the third-order, o.(Zo.), VP

density, p', is calculated for k =+1 and Z &Z„
to provide a check on internal consistency and to
estimate the dependence of p" on different nu-
clear charge densities. The calculation of p' in-
volves the contour integral of the third-order
Green's function, TrG~', for k =+1 along contour
I. Two models for the nuclear charge densities
were used for calculating p: (I) a shell density,
pN„=5(& —R)/4&R', and (II) a uniform density,
pN„, = &(R —x)/(4' /3) The nuc. lear radius was
chosen to be 10 fm in both models. The densities
p" and pH, were calculated with model I. The
construction of TrG~, TrG„', and TrG„' is the
same here as in Ref. 6 and will be discussed in
more detail in a subsequent paper,

The following tests cheek the numerical accu-
racy of the constructed Green's functions. First,
the location of the 1S», and 2P», poles were com-
puted as a function of Z. The values of (Zn), „
were determined for model-I nuclei for R =8, 10,
and 12 fm, with (Zo. )„=1.25189, 1.27459, and
1.29530, respectively, for the 1S,&, state, and

(Zo),„=1.383 for R =10 fm, for the 2P»2 state,
in agreement with Ref. 3. Furthermore, in agree-
ment with Ref. 2, dB/dZ at Z =Z„was ca.lculat-
ed to be 27 keV for the 1S», state and 35 keV for
the 2Py/2 state. Secondly, the residues at those
poles were calculated in order to check that the
normalized bound-state wave functions were giv-
en correctly. All S», and Pyfp wave functions cal-

culated thereby were normalized to unity to bet-
ter than one part in 10'. The limit R-0 was tak-
en numerically for Zn &1 to check that these
wave functions reduce to the point-nucleus form.
In addition, (I/r) was computed for these wave
functions since dB/dZ = am, c'(1/x) which can be
compared to the values computed above; at Z
=Z„, e.g. , dB/dZ = 28 keV and 37 keV for the
1S», and 2P», states, respectively, in good
agreement with the above values. Thirdly, for
the special case of Z =82, extensive checks on
the charge densities were made showing that the
limit R —0 and the finite-nuclear-size effect
agreed with other calculations. ' Finally, the to-
tal space integral QH, of pH, was computed for the
range 0.6 ~ Ze - l.38 since the extent to which
Q H, = —2 l e I is satisfied measures the accuracy
of the numerical contour integration along I. The
computed values of Q„, were equal to —2le I to
better than 1 part in 10' over the entire range.
The accuracy of the computed p'+ for Z & Z„ is
less as a result of cancelations necessary to in-
sure that the total charge of the vacuum vanishes.
This accuracy is estimated from the magnitude
of the ratio of the integral of p

' over all space
(r~ 13k.,) to the integral over the range where p

'
is negative (r ~ 100 fm). This ratio was found to
be ~ 0.01, indicating a numerical accuracy on the
order of one percent.

The computed 1S,&, energy shifts for Z &Z„. due
to higher-order VP are listed in Table I. These
energy shifts should be compared to the shift due
to the Uehling potentia, l. The Uehling potential is
attractive and increases the binding energy of the
1S», state by approximately 10 keV at Z„.'"
The higher-order VP is repulsive but is seen in
Table I to reduce the binding energy by only 1
keV at Z„. The last two lines, in particular, in
Table I indicate the absence of any singularities
of 4E" at Z„. Thus, even though the shift ~"
due to higher-order VP increases rapidly for Zo.
&1, it remains too small to prevent the 1S»,
state from reaching the lower continuum. Fur-
thermore, the results for third order indicate
that the dependence of ~"on the specific nu-
clear charge density is a 10% effect, i.e. , on the
same order as the uncertainty in ~3' due to ne-
glect of the tel ~ 2 contribution to the VP density.

Since the results for Z &Z„show that VP re-
mains a small perturbation up to Z„, the use of
the unperturbed Green's functions, TrGI, and
TrG~', in computing p

' —= p « for Z & Z „„will not
lead to large errors. In Fig. 2(a), pH, is plotted
for several values of Zn around (Zo. )„=1.274 59.
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TABLE I. The 1$1/2 energy shifts in eV due to vacuum-polarization or-
ders o. (Zm)", with ~ + for g -3, and &F& &&

for g =3, mode1-I and -II
nuclei. E,s 1/2

and E2P locate the bound-state poles in units of m, . The
nuclear charge density tor all but the last column was taken to be model
I with& =10 fm.

0.95
1.12
1.205
1.2732
1.274 45

~ 1S 1/2

0.362
0.137

—0.550
—0.990
—0.999

2P 1/2

0.817
0.570
0.265

—0.118
—0.126

6.26x 10
3.07x 102

6.41x 10
1.14x 103
1.15x 10'

3

4.70x 10
1.97x 10
3.68x 10'
5.66x 10
5.70x 10

3

4.92x 10
2.11x 10
3.99x 10
6.20x 10
6.24x 10

6-
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I
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2

I
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The continuity of pH, at Z„was examined by cal-
culating pHe for Zo. =1.2732, 1.27445, 1.27545,
and 1.28 and checking point by point in the range
0~ xs 13A,, that the values of pH, for the different
Z can be smoothly connected, The increased

localization and continuity of pH, as a function of
Z is illustrated in Fig. 2(b), where the average
(1/r) for p„, is plotted. These results demon-
strate that the heliumlike system is stable and
well behaved around Z„and that the charge den-
sity of the overcritical vacuum is indeed highly
localized. "

It should be noted that for Ze =1.383, the 2I', /,
state reaches the lower continuum and the helium-
like system will decay to a berylliumlike system
plus two free positrons. " The charge density of
the berylliumlike system can be studied in the
same way as pH„simply by shifting the contour
C„,to the right of the 2P„, pole.

In this Letter the effect of VP in very high-Z
atoms has been considered. The effect of the
Lamb shift has been estimated by other work-
ers, ' but agreement on the size of that effect has
not yet been reached. More work is needed on
that problem.

The author gratefully acknowledges helpful con-
versations with Dr. P. J. Mohr, Dr. W. Greiner,
Dr. %. J. Swiatecki, and Dr. E. H. Wichmann.
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FIG. 2. (a) The heliumlike charge density for sever-
al values of y =—Z n around (Z n) ~, = 1.274 59 with a
model-I, R =10-fm nucleus. (b) The average (1/x) for
pH~ as a function of Z n.
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A general way is demonstrated to derive Bhcklund transformations for nonlinear par-
tial differential equations that are solvable by the inverse scattering method in the scheme
of Ablowitz, Kaup, Newell, and Segur.

Recently, Ablowitz ei al. ' discovered a general
scheme for finding the set of nonlinear partial
differential equations that are solvable by the in-
verse scattering method. This paper will show
how one can derive the 85,cklund transformation
from the auxiliary equations for the inverse
problem. ' This derivation provides the basis
for unifying the two different approaches to solv-
ing these nonlinear equations.

Ablowitz et al. ' have found that the integrability
conditions for the systems of linear partial dif-
ferential equations

Vl „+f$V~ =qV2, . V2~ —Z/V2

vg g
—Avl + Bv2q V2 g

—CVg —QV2

are exactly those equations which allow soliton
solutions solvable by the inverse scattering meth-
od. The integrability conditions are

A„=qC —rB, B,+ 2ipB =q, —2Aq,

C„-2zgc = r, +2Ar.

Finite expansions of A, B, and C in terms of g

reduce the problem to specific equations of inter-
est, for exa.mple, Korteweg —de Vries (KdV), '
modified Korteweg-de Vries (mKdV), ' sine-Gor-
don, ' and nonlinear Schrodinger equations. '

Equations that are solvable by an inverse scat-
tering problem are found to be also solvable by
Backlund transformations. " But till now only
two such transformations have been found. "
They are derived independently from a tedious
ad koc elimination procedure (or simply from a
guess). I present in this section a unified way of
finding them from the inverse problem, and
therefore, provide a basis for the statement that
corresponding to each inverse problem there

exists a BKcklund transformation.
From Eqs. (1)-(3), we can easily get a system

of equations for the quantity u —= v, /v, :

Q„=2sgu —m +q, u, = au —Cu'+ B. (4)

This equation is very important. I will demon-
strate in the following by showing examples that
all Backlund transformations can indeed be re-
duced to (or derived from) this set of Riccati
equations. A specific identification of u as a
functional of q and q'will provide a BKcklund
transformation to a particular differential equa-
tion. These Backlund transformations can be
divided into different classes.

Class I.—For the first class z= const= —2.
Equation (4) then becomes, with i g =k,

Q = —2ku+2Q +q Q, = au —Cu'+ B. (5)

A =4k'+ 4kq —2q„,

B = —4k'q + Mq„- q„„—4q',

C = 8k'= 8q.

(6)

If we eliminate q in Eq. (5) we get an equation
for u,

u, —24u'u„+ 24kuu„+ u„„„=0. (7)

This is a mixed KdV-mKdV equation. Equation
(5) provides a O'Acklund transformation between
solutions of the KdV equation and Eq. (7). In par-
ticular, if k =0, Eq. (7) reduces to the pure mKdV
equation and Eq. (5) becomes the famous Miura
transformation. Now, we can see that if (u, k)
satisfies Eq. (7), then (-u, -k) also satisfies

The simplest example in this class is the Korte-
weg-de Vries equation, ' q, +12qq„+q, „„=0. Fol-
lowing Ablowitz et al. , we identify A., B, and C
to be

925


