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The local theory for the photoyield resulting from p-polarized light incident upon a half-
space photoemitter is reviewed and generalized to include nonlocal effects. Local and non-
local yields for the electron gas are presented for frequencies above the plasma frequency.
The nonlocal yields are substantially higher than the corresponding local yields and it is
shown that this enhancement involves nondirect electronic transitions associated with both
plasmons and single-particle excitations.

Optical experiments are usually analyzed by
characterizing the material under investigation
by a local dielectric function e(v) = e, (cu) + is, (&u).

That such a characterization is incomplete for
metals is indicated by a nonlocal optical theory'
in which longitudinal excitations, not included in
a local description, result from P-polarized in-
cident light. In most investigations of these non-
local effects, the only longitudinal excitation in-
cluded has been the plasmon. The single-parti-
cle excitations have also been included in those
studies in which the author has participated.

A theory for the photoelectric yield based upon
the local dielectric representation has been giv-
en by Pepper' and Endriz and Spicer. Although
the nonlocal effects mentioned above do not
strongly modify the local optical properties for
a thick sample when realistic values for the
mean electron lifetime are included, this need
not be true in the case of photoemission since
the nonloeal effects are concentrated near the
surface' and the electron escape lengths are
short. ' In this note the local photoemission theo-
ry is summarized and then generalized to the
nonlocal realm for the electron gas using the non-
local theory of Fuchs and Kliewer.

Consider P-polarized light of frequency &u inci-
dent from vacuum at an angle g from the normal
upon a half-space photoemitter described by a
local dielectric function. The reflectance A~ for

this system is A~ = l(cos8 —Z~)/(cos 8+Z~)l', with

Z~, the local surface impedance, given by Z~
= (e —sin'8)' '/e, and the absorptance A~ is
A~(8, &u) = 1 -Ii~. With z increasing into the photo-
emitter whose surface is the plane z =0, the ab-
sorbed energy is distributed according to (dA/dz)
= aA~ exp(- nz), where the absorption coefficient
n = (2~/c) Im(e —sin 8)' so that A~ = Jo (dA/dz) dz.

If we then assume that the energy absorption
processes result in individual electron excita-
tion, the distribution of excited electrons pro-
duced within dz at z per incident photon is (dA/
dz) dz. By writing the probability that an electron
excited at z will reach the surface as exp(- z/
$)/2, the number of excited electrons reaching
the surface per incident photon will be n, =I,"dA
x exp(-z/$)/2. The quantity $, which we call the
electron escape depth, is a function of the final-
state energy E, occurring in the electron excita-
tion process. However, we take it here to be a
mean escape length for electrons excited by pho-
tons of frequency &u, so that n, =A~[a)/(1+ o.()] /2
and the photoyield Yr(8, cu) can be written

Yr(8, (u) =n, +I"(F., ),

where & is a function describing the probability
of escape of excited electrons which reach the
surface. We are concerned here with the func-
tion which we will refer to as the yield, defined
by

Y(8, ~) = Y,(8, ~)/g(&(&. )/2) =A &&/(&+ &&)~

E

An alternative expression for V can be obtained as follows. The time-averaged power absorbed per
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unit volume at z is Re[1(z) E(z)*/2], with E(z) the electric field in the photoemitter and $(z) the cur-
rent density resulting from E. Dividing by the time-averaged incident energy flux (c/8x) cos(() (the elec-
tric field incident from vacuum has magnitude unity) yields dA/dz. Thus,

I'=(4)T/ccoso)J, "ReP E*]exp[-z/$]dz. (2)

Expressions (1) and (2) are identical in the local description.
We now turn to the nonlocal theory and consider the photoemitter to be the half-space introduced

above, but now an electron gas for which the surface electron scattering is specular and which, there-
fore, can be characterized by the nonlocal longitudinal and transverse dielectric functions e, (q, cu) and

e, (q, &u). To afford a direct local-nonlocal comparison, we determine the nonlocal yield using Eq. (2).'
The nonlocal E and X are obtained using the procedure of Sec. III of Ref. 2. With p-polarized light in-
cident in the x-z plane, we find

E (z) 2i&u " cos(q, z) q,
' q.'

H (0) IIC lp (K /c )c) (tU /F)E( Ip )
E,( )z2&uq„ t'" q, sin(q, z) 1 1

H, (0) cc J
" ' q' (tc/c)c, q (tc/c)E)

the x component of the incident photon wave vector is q„= &u sin(//c and q' = q„'+q,'. The factor
exp[i(q„x —&2)t)] is understood here and in the current-density components, given by

J (z) uP " cos(q, z) q„'(e, —1) q,'(cq —1) }

H, {0) zw c o
' q' ((d /c )&, ((2) /c2}e, —q Jl'

J.(z) i(u'q„ t" q. sin(q, z) (e, —. 1) (e2 —1)
H (0) 2c c J '

q (tc/c )c, (tc/c)cg 0')'

(3a)

(3b)

(4a)

(4b)

The magnetic field at the surface, H„(0), can be rewritten in terms of the nonlocal surface impedance

Z»~ -—E„(0)/H, (0)2 given by (3a), as H, (0) =1+rq with r=(cos6) —Z~NL)/(cos&+Z~NL).
We use for e, (q, ur) the self-consistent field dielectric function of Mermin, ' which includes damping

via an effective electron lifetime T The d.amping is characterized by the parameter y = (~~~) ', with

co~ the plasma frequency. Since we consider here frequencies above the plasma frequency, the trans-
verse dielectric function can be replaced by e{cu), its value in the local limit':

c((d) =lime, (q, (d) =lime, (q, ru) =1 —[Q(Q+iy)] ',
q~O q~ o

with Q = (d/&u~. We use (5) for the local yield cal-
culations.

In Fig. 1 is shown the yield, as a function of
the angle of incidence of the light, for 0 =1.414,
y =10 ', and several escape lengths, including

$ =~ for which the yield is just the absorptance.
In the nonlocal calculation the electron density of
sodium was used so that@~~ = 6.07 eV and the
Fermi velocity vF =1.07x10' cm/sec. The shape
of the local-yield curves has been discussed by

Arakawa, Hamm, and Williams. '
Turning now to the nonlocal results, we see

that, while the shape of the curves is .rather like
that of the local curves, the magnitudes are
much larger. This is true for all Q&1. The ex-
planation for these strongly enhanced nonlocal
yields emerges from Fig. 2 where the absorp-
tance per unit length dA/dz is plotted as a func-
tion of distance into the photoemitter for the so-
dium density, @=10 ', and 0 =1.155, 1.414, and

(5)

2.924, with the associated angles those for which
the yields are approximately maximal. We see
that dA/dz has large oscillations" with a frequen-
cy-dependent wavelength. These oscillations are
longitudinal in character and their origin can be
readily traced In.the nonlocal A~ and dA/dz,
manifests itself roughly via the energy-loss func-
tion Im(- I/e, ); so we look to phenomena pro-
ducing peaks in this function as the source of the
dominant longitudinal effects. For 0 = 1.155, y
=10 ', and the sodium density, the plasmon peak
occurs at q =0.5VO A ' or X =11.0 A, the wave-
length of dA/dz in Fig. 2. Thus, the oscillation
for 0 =1.155 is essentially a standing phasmon
wave. The same is true for 0 =1.414 where the
plasmon peak in Im(- 1/e, ) occurs at q =0.828 A '

o

or A. =7.59 A. We are now, however, very near
the frequency for which the plasmon dispersion
curve enters the single-particle excitation region
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FIG. 2. Nonlocal dA/dz versus distance for y=10 ~

and the sodium electron density.
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FIG. &. Local and nonlocal yields for several elec-
tron escape depths ( versus the angle of incidence of
the light for &=1.414, &=10 ~, and, nonlocally, the
sodium electron density.

with attendant Landau damping; this occurs for
the present conditions at 0 —=0~=1.48 and q —= q~
=0.868 A '. The plasmon for 0 =1.414 is more
strongly damped than for 001.155. This together
with the proximity of the single-particle region
means that the contribution to Im(- 1/e, ) from
this region is no longer negligible. This is indi-
cated in Fig. 2 by the fact that the wavelength of
the oscillations for small z is somewhat less
than the plasmon wavelength.

No significant changes occur in the curves anal-
ogous to those of Fig. 1 because of the onset of
Landau damping. However, the character of the
oscillations in dA/dz does change. In the fre-
quency region of Landau damping, the plasmon
peak in Im(-1/s, ) becomes broad and is super-
imposed upon the even broader structure in this
function resulting from the single-particle exci-
tations. " It now is important to recognize that
the energy-loss function appears in the theory

roughly in the form Im(- 1/e, )/q'. With Landau
damping the q values of the single-particle exci-
tation region are large, and this function, for
fixed 0, will be strongly peaked at a q value only
slightly larger than that of the low-q edge of the
single-particle excitation region, the edge de-
scribed by &u = qt F +hq'/2m, with m the electron
mass. When 0 =2.924, the low-q edge occurs at
q=1.42 A ' or A. =4.41 A. It is apparent in Fig. 2

that this value of X well characterizes the oscil-
lation. The fact that the peak in the function
Im(- 1/~, )/q' includes a small range of wave
vectors above that of the edge is indicated in
Fig. 2 by the reduced wavelength of the oscilla-
tion near z =0 and also by the fact that the oscil-
lations now persist to shorter distances corxi-
pared with those in the frequency region of the
sharp plasmon peaks in Im(- 1/c, ). Thus, both
types of longitudinal excitation, plasmons as
well as single-particle excitations, contribute
strongly to the yield; which dominates depends
upon the frequency. We emphasize that these
longitudinal effects, associated, as they are,
with large wave vectors, involve nondirect elec-
tronic transitions.

The y used above was chosen to be small to
emphasize the nonlocal effects. When describing
real systems using the electron-gas picture, y
is often taken to be frequency dependent, there-
by providing a rough representation of interband
effects, and y may be considerably larger than
10 '. It should be noted, however, that the non-
local yields can be significantly higher than the
local even for y-1.

In the above calculation of the yield, the basic
assumption was that the optical absorption pro-
cess resulted in excited electrons which could
migrate to the surface and escape. However, for
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frequencies 1& 0 & Q„ the nonlocal effects are
largely due to the excitation of plasmons; these
collective effects can manifest themselves in the
yield only to the extent that they decay into single-
particle excitations. This process cannot occur
in the genuinely free electron gas until Q) Q„;
for a real system plasmon decay can occur at
all frequencies due to interband transitions. The
inclusion of damping in ~, in the present free-
electron picture simulates these decay process-
es as is indicated by a finite plasmon linewidth
which increases roughly like q' along the plas-
mon dispersion curve. " Because the yield for
1&Q & Q„and L9to is limited by these plasmon-
decay processes, we conclude that the above non-
local theory overestimates, to some extent, the
yield to be expected experimentally in this fre-
quency range for materials with long plasmon
lifetimes, e.g. , aluminum and sodium, but be-
cause of nondirect interband transitions as well
as the finite plasmon lifetime, the yield will still
exceed significantly that of the local description.
The overestimate will be largest for 0 =—I, will
decrease with increasing 0 as the plasmon life-
time decreases, and will no longer occur for Q)Qi as the dominant longitudinal excitations are
then of single-particle character.

Although the theory in the present form is for
the total yield and does not provide a description
of the energy or angular distribution of the ex-
cited electrons, one interesting prediction con-
cerning these characteristics does emerge. In
the frequency region of Landau damping, Q: Qi,
it was noted above that the dominant longitudinal
effects arise from single-particle excitations oc-
curring near the low-q edge of the single-parti-
cle excitation region. This low-q edge corre-
sponds to excitations from an initial state k lying
on the Fermi surface with the exciting wave vec-
tor q parallel to k. Since the large wave vectors
associated with the longitudinal effects are di-
rected essentially normal to the surface [see
Eqs. (3) and (4)], the electrons excited are mov-

ing normal to the surface. So, for Q ~ Q~ and all
L9co, the nonlocal enhancement of the yield should

appear essentially as electrons from near the
Fermi surface leaving the photoemitter approxi-
mately normal to the surface.

The present theory is macroscopic in charac-
ter, based as it is upon e(q, ~). That is, only the
diagonal elements of the dielectric tensor have
been retained and local-fieM corrections are not
included. As is clear from Fig. 2, the scale of
spatial variation for Q: 3 is such that this may
no longer be valid.

Additional questions arise as to the validity of
the specular scattering model and the role of
surface roughness. Experiments on low-absorp-
tion materials such as sodium (h~~ = 5.7 eV),
aluminum (he@~ = 15.0 eV), and silicon (Picu~ =16.6
eV) would be helpful in answering these questions.
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