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ues of E„,' and E„,' at 4.1 K are about —,
' of their

values at 80 K. The dependence of E,„, on tem-
perature is consistent with theoretical predic-
tions. E,„, at low temperatures can be expressed
in the form'

z,„,(7) =z„'"-z,(r) =z„"-c(s+p)'", (7)

where Z,t'" is independent of p or temperature,
c is a positive constant, and z is the number of
conduction electrons per ion for P =0. The val-
ues of E„," for the Eu„La, „Bh, compounds were
found to be positive (except for Z,„,' of x =0.075)
and P therefore decreases with temperature. Ac-
cording to Eq. (7) such a decrease will cause
E„," to be an increasing function of temperature,
as found from our analysis of the experimental
results.

In the analysis of the experimental results, it
was assumed that the widths of all the moving
lines do not change as a function of temperature,
and that they are equal to the linewidth in the ab-
sence of fluctuation phenomena. This assump-
tion implies that the characteristic fluctuation

time between the 4f localized level and the con-
duction band is shorter than 4&10 "sec. Such
short fluctuation times are consistent with the
values of 100 K found for the widths of the local-
ized 4f level. Such a width corresponds to a life-
time of 10 "sec.
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It is shown that the ferromagnetic Ising model on a Cayley tree lattice exhibits a new
type of phase transition at the field B = 0 below the Bethe-Peierls transition tempera-
ture T&I,. The leading nonanalytic part of the free energy is of the form B, where the
"critical" exponent v(T) increases smoothly from one to infinity as the temperature
goes from 0 to TB&. This implies a transition of "continuous" order ~.

The self-consistent Bethe-Peierls (BP) treat-
ment' has been believed to be exact for the ferro-
magnetic Ising problem on a Cayley tree (also
called Bethe lattice). 2 Only recently Eggarter'
found that the corresponding free energy at zero
magnetic field is an analytic function of the tem-
perature, thus implying no phase transition in
contrast to the BP treatment. As pointed out in
Ref. 3, the explanation of the apparent paradox
is the unusual topological structure of a large
Cayley tree: Not only is a finite portion of its
sites on the surface, but the "interior" of a Cay-
ley tree, i.e. , all sites a sufficient distance
away from the surface, actually contains an ar-
bitrarily small portion of all the sites. The BP
transition, in fact, takes place only in the "in-

terior" and disappears if the bulk properties are
calculated in the proper thermodynamic limit.

In this paper we shall prove that the bulk be-
havior of the Ising model on a Cayley tree never-
theless displays a phase transition, but an un-
usual one. The transition is seen only in the field
dependence of the free energy and becomes arbi-
trarily weak, if the Bethe-Peierls transition tem-
perature T» is approached from below. Since
this transition smoothly interpolates between a
first-order transition at T =0 and an infinite-or-
der transition at T», it might be called a con-
tinuous transition.

First we derive a closed expression for the
free energy per site in the thermodynamic limit.
For simple notation we use a reduced tempera-
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ture, t = {PZ) ', where J )0 is the nearest neigh-
bor coupling, and a reduced magnetic field b

=PUB. In these variables the partition function
is given by

Z(t, b) = Q exp(bQ o';+t ' Q o, o,).
(a; =~i) i (&,2)

Let K) 2 be the connectivity of the Cayley tree.
(The linear chain, K= 1, is well known and is
omitted here. ) Following Eggarter' we consider

an n-generation branch. It is defined as an initial
site connected to K (n —1)-generation bra, nches;
a 1-generation branch is a single site. Let Z„'
be the sum of all contributions to the partition
function of an n-generation branch with initial
site spin up (+) or down (-). Then the recurrence
relations

Z, '=e"[Z„'e""+Z e""]" Z '=e" (2)

are easily derived. ' For the ratio Z„'/Z„
= exp(2x„) one obtains from (2) the relation

x„„=b+ p Kl nf [exp(2x„+ 2/t) + 1] / [ exp(2x„) + exp(2/t)] ], x, = b . (3)

Since the right-hand side is bounded in x, it follows that Z„ /Z„ is finite for n-~ and thus

z =z '+z -z '-(z 'z )'"
in the thermodynamic limit.

The relations (2) can be solved in terms of x„. In particular, one finds

ln(Z„+,+Z „+, ) = K ln(Z„+Z „)+K in( [ exp(1/t) + exp(- 2x„—1/t)] [ exp(1/t) + exp(2x„—1/t)] j
= g K"" in[exp(2/t)+exp(-2/t)+exp(2x )+exp(-2x )].

m=g

To calculate the free energy we consider an rt-generation branch. ' The total number of sites on the
branch is

K'=(K"- 1) /(K- 1)

m=0

If E„denotes the free energy, we obtain

f(t, b) = —lim "=a(K —1) lim K "ln(Z„+Z„)
N„ n

= 2 (K —1) Q K ln [ exp(2/t) + exp(- 2/t) + exp(2x ) + exp(- 2x )] .
m=g

For zero field, obviously x„=0 and we obtain Eggarter's result: f(t, 0) =ln(e'"+e "'). Here we are
interested in the b dependence of f and therefore we consider

OQ 2

af(tb)=f(I, h) f(I, O), = —(fC-() p lC -"1n 1+ =", )n=y cos

Relation (3) is rewritten as

x„+i=b+h(x„), xi =b,

h(x) = r~ K In[[ 1+ (y/K) tanhx] [ 1 —(y/K) tanhx]

with the parameter y(t) =Ktanht '; tB, is then defined by y(tBp) =1.
As it is known that f is analytic in b except at b =0, we shall investigate &f for small b The foll.ow-

ing properties will be proved'.
(n) Tl:e free energy is analytic at b =0 for all t) t~p.

(P) The free energy is nonanalytic at b =0 for all t &t((p. The b dependence can be represented by the
asymptotic expansion

&f= Q ~, (t)b" +A(t) ~
b )'f1 +c,(t) i b)+c,(t)b'+. . .}.

l= j
(8)
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Here a, = a, (t)(1 —y" /K) ' diverges at the tern
perature t =t» given by y(t, 1) =K'"' (t, &t4 & ~ ~ ~ & t
= tap) and the "critical" exponent,

lc(t) = lnK/lny (i),

smoothly increases from 1 to ~ as t goes from
0 to tBp. In particular, the expansion (8) implies
the following:

(p1) For t & t» the l leading terms are regular
of the form

l

(~f)„,= P [a./(1 -y™/K)]b'" (10)

such that the coefficient of 6" diverges as t- t»
from above.

(P2) The leading nonanalytic terms l b l' is
dominant only for temperatures 0 & t & t„where
1 ~ w & 2, whereas in the range t» «& t» „,where
2l & I(. & 2/+2, it succeeds the t regular terms of
(P1)

(P3) For ( =t2, (l=1, 2, . . . ) both a1(t) and A(t)
diverge and the leading nonanalytic term is
a1(t21)(2l/InK)b2' ln(1/l b

l ).
To prove these statements we first notice that

the analytic structure of the free energy (5) near
b = 0 is closely related to how the x„vary with b
for large n. The crucial quantity controlling this
behavior is the derivative I1'(0) = y of the function
h in Eq. (7).

For y & 1 (t & tBp) the map given by the iteration
procedure (6) is contracting for sufficiently small
values of x„. Simple inspection yields the esti-
mate [I1'(x) I

( (1 +y)/2 & 1, if 4 I x I' & I - y (x com-
plex). With the standard methods for proving
Banach's fixed-point theorem it follows that for
(complex) b within the circle l b l

& (1 —y)~ /4
=&(y) the x„(b) always remain in the region
4[ x„[2 &1-y and converge uniformly towards an
x„(b) which then is analytic in b. This ensures
that the free energy (5) is analytic at least in the
circle lb l &e(y) and proves statement (o'. ).

For y &1 (t & tBp) the iteration (6) obviously is
unstable around b =0. While x„(b=0)=0, the se-
quence x„ for arbitrarily small l bl &0 converges
to a finite value x„(b), which for b =

l b l

e'~ ex-
plicitly depends on y (the cases @=0, v/2, 1T

can be checked easily). Thus, x„certainly does
not converge uniformly in any neighborhood of
b = 0 which suggests a nonanalytic behavior of &f
around b =0. In order to work out the nonanalytic-
ities explicitly we inspect the formal expansion
of &f in powers of b'. Since lz(x) is an odd func-
tion, x„(b) also is odd and its expansion is

x (2l - 1)b2/ 1

l=y

From Eq. (6) we obtain a sequence of linear re-
currence relations for the expansion coefficients
x„"" The first one is x„"=1+yx " (x, "
=1), with the solution

The next relation is
(Si yx (3) 1

y[1 (y/K)2](x (11)3 x, ' =0.{3}

As we are interested only in the dominant con-
tribution for large n which is generated by the
inhomogeneous term, we get from (12) x„~s~

=O(y3"). Similarly, the leading term of the high-
er order coefficients is x„f" '~ =O(y ' '). Ex-
panding the free energy as

4f=Q a,b"

one finds that the most dangerous contribution
to a, is the geometric series Q„K "y"" which
converges only for y"&K, i.e., t&t». This
proves (P1). In addition we note that the a, ean
be calculated successively. The first coefficient
is easily derived,

a, (t) =(1+y/K)'/[2(1 —y'/K)], (13)

which corresponds to the susceptibility, also
calculated recently in Ref. 7.

The next step is to modify the above expansion
such that the divergence in a& for t &t» is re-
moved. Intuitively, this is achieved via the fol-
lowing cutoff argument. Using the expansion (11)
term by term to calculate the free energy to in-
creasing orders in b ceases to make sense as
soon as x„~" ' b" ' is of order 1. This happens
(for all I) when y"b =0(l) or for n-no(b) =lnlbl 1/
in@. If a contribution to the free energy resulting
from a formal expansion into powers of b di-
verges, the influence of the higher order terms
in Eq. (11) can be sensibly replaced by cutting
off the summation at n =no(b). The result of this
procedure is that for t & t, i the most divergent
contribution to a&&" is converted into

np{b}
b" Z K-"y""-b"(y"/K)" = lbl', (14)

895

where z(t) is given by Eq. (9).'
It is straightforward to make the above cutoff

argument rigorous by putting upper and lower
bounds on the singular part of bf which both dis-
play the lbl' power law exactly. Since k(x) is
concave for x& 0, an upper bound x„on x„ is given
by (b &0)

x„i,=b+yx„, x, =b or x„=b(y"-1)/(y —1),
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where the restriction x„~ 6+h(~) can be imposed, too. An appropriate lower bound x„on x„ is found

by considering the recurrence relation for exp(2x„). Since, for z 1, exp [2h(x)] is a convex function
of exp(2x) around x=0 and because

d exp [2h(x)] /d exp(2x) (&-,= y,

the linear recurrence relation for exp(2x„) is

exp(2x„+~) =exp(2b)(1+&[exp(2x„) —1]], exp(2~x) =exp(2b),

which can be used up to some finite value x„c(y). The logarithm in Eq. (5) is bounded by (o,„,&0)

n, exp(2x)-1 ', x&c
o.,x' 0 ln(1+ sinh'x/cosh't ') ~

'I 0 x&c.

Inserting x„,x„ into these bounds completes the proof of (P2) after a little algebra.
At the particular temperatures ( =t» the sum in Eq. (14) has to be performed differently, because

y2'/K=1. The result is
~p pl n

=P'[n, (t) —1]-t"inst [-'.
K

Again, by considering the bounds described above, it is easily confirmed that this is the exact leading
nonregular contribution. One may even calculate the coefficient in front of this term. Since the free
energy is regular for b 40, the coefficients a, (t) and -A. (t) necessarily have identical singular behavior
at t = t». With y(t)'t'~ =K we therefore obtain

lim [a~(t)b' +A. (t)~ 5(']„„=a,(t„) lim I —y E

= a, (t»)(2l/inK)b2' in( b [

which completes the proof of (P3).
We have shown that the Ising model on a Cayley

tree exhibits an unusual type of phase transition
which one might call a continuous phase transi-
tion. It actually consists of a line of phase tran-
sitions extending from t = 0 to t = tBp. At any tem-
perature t in this interval the transition is char-
acterized by the exponent l&(t) given by Eq. (9).
If one uses an Ehrenfest classification, the tran-
sition is of 1th order in the interval t~, &t &t&

[X (t~) =K]. If t approaches t„= tgp the transition
is of infinite order and the nonanalytic part of
the free energy fades away. The usual type of
phase transition is associated with the appear-
ance of some kind of order which sets in either
abruptly (first order) or continuously (second
order). The system considered here apparently
is not able to establish order except at t=o. The
line of phase transitions we have found interpo-
lates between the high-temperature disordered
state and the zero-temperature ordered state in
the most continuous way.

It is evident that the continuous phase transi-
tion in our case is a consequence of the topology
of the lattice. There is, however, evidence that
this type of transition also might occur in more
realistic situations. One example is the random

Ising ferromagnet on a two- or three-dimensional
lattice. Griffiths" showed that these systems
have a temperature range of nonanalytic field
dependence without spontaneous magnetization,
although the singular behavior could not be
worked out explicitly. Furthermore, a number
of two-dimensional models with continuous sym-
metry are known to show no spontaneous order
at nonzero temperatures, but they appear to have
a susceptibility which diverges at a finite temper-
ature corresponding to our t, . It is possible
that also in those systems one has a continuous
phase transition extending to some t„&t„ like
the one described in this paper.
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A new decoupling procedure for the two-level induced-moment system in the paramag-
netic regime is described. It offers improvements over the results of other methods
and can in principle be extended to other systems.

lt is becoming commonplace to study and understand the magnetic properties of rare-earth metals
and intermetallic compounds in which the effects of many crystal-field states are significant. These
systems are studied theoretically by using a molecular-field approximation, ' a random-phase approxi-
mation (RPA), ' or, less frequently, the two-site correlation approximation (TSCA).' One of the origi-
nal systems studied was the two-singlet induced-moment system'' in which the two lowest single-ion
eigenstates, IA) and IB), of the crystal-field operator V' are magnetic singlets separated by an ener-
gy b, . All matrix elements of the total magnetic moment operator S, of the ith ion between these two
states are zero except for (BlJ'IA) = n The. Hamiltonian was assumed to be

II = Q, tK-„X, f,. +. QtVq', V'IA) =0, V'IB) =b, IB).

The collective excitations have been calculated using the RPA and TSCA, and some thermodynamic
quantities have been calculated self-consistently. Two points should be noted, one of which will be
taken up: (a) The magnetization is double valued as a function of temperature T, in general, which is
interpreted as indicating a first-order phase transition. There are arguments that the transition
should be second order. (b) The exact excitation spectrum in one dimension has been calculated. ' It
does not agree with RPA or TSCA calculations. Here, a decoupling scheme will be outlined which
gives results for the paramagnetic region' ((J') =0) which agree closely with the exact result. The ex-
tension of it to describe the magnetically ordered region will be treated elsewhere.

For simplicity we shall assume a nearest-neighbor exchange interaction and map the operators J&',
J,.', and V,.' onto the components of a pseudospin--, operator, o, The eigenstates of v,.' are I+),. belong-
ing to eigenvalues +-,'; we map IA)- I+) and IB)- I-), and the Hamiltonian becomes"'

H = —Jg,.~a,. v, ,~" —b, Q&v,.'+ 26N, (2)

where 8 is a primitive lattice vector and N is the total number of ions. The operators o,. and a;. are
two of the single-excitation operators of this system. In the paramagnetic region (o ) =0. The equa-
tions of motion for the Green's functions are'

E ((0q" IB)))=g"(r,. —'r() +i b(( 0)'I B~)),
'

E((a, ' IB,.)) =g'(r, . —r,.) —ib ((v,.
"IB,.)) + 2iJg&((o, 'o, z" IB&)),

g "(r,. —r, ) = (2' ) '([(r) ", B,.]).
At this point the RPA replaces ((o, 'cr„JIB,.)) by (a ) ((v„~"IB,.)). This approach treats o as an approxi-
mate constant of the motion by taking the approximate ground state of (2) to beII, I+), The ground
state for the case N=2 contains I+),I+), with a (J/6)-dependent admixture of I-)J—),. If we consider
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