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where

~(T) = s[2+y(T)], (12)

and y(T) is the Yoshida function; f (T) is still
given by Eq. (10), where the order parameter is
now isotropic.
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perature) and with the Osheroff and Brinkman re-
sults' can be considered as satisfactory: Be-
cause of the scattering there is no real contra-
diction. Again a thermal gradient can partially
explain the discrepancy.

In the isotropic state, according to Leggett, '
there is no shift in the transverse resonance in
a bulk equilibrium, but there is a longitudinal
resonance frequency Qz, (T). For the width of this
line, we find"

(2f (T)+ V(T)]SA~= —', Q~'(T)~(T)
( )t, ( )],
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Recently developed renormalization-group techniques are summarized and exploited to
yield a renormalization-group analysis of bicritical and tetracritical points (which arise
in antiferromagnets and boson systems). For n & 3 an isotropic or Heisenberg fixed point
dominates and gives bicritical behavior; but for n~ 4 a new "biconical" fixed point with
irrational &-expansion coefficients appears. This describes a tetracritical point and may
be relevant to displacive phase transitions.

In an earlier note' (referred to as I), a scaling
theory was developed for bicritical points such
as antiferromagnetic spin-flop points and the
analogs of the upper ~ point in 'He. Here, re-
cently developed renormalization- group tech-
niques' are summarized and employed to give
concrete numerical predictions for the exponents

introduced in I. Three distinct fixed points are
found to play a role: As the number of compo-
nents of the order parameter is varied, either
an isotropic Heisenberg, a "biconical, " or a
"decoupled" fixed point dominates the behavior,
which is bicritical in the first case but tetracriti-
cal with an intermediate, doubly ordered phase
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in the second two cases. As in I, we treat a uniaxially anisotropic antiferromagnet of n-component
spins S(R) = [S,(R) -=S(((R), S~(R)] at the sites R of a (f-dimensional lattice. The interaction Hamiltonian
1s

~; „q ———Q [(R —R')S(R) ~ S(R ') +D(R —R')S(( (R)S(((R')]
RR'

[H((S(( (R) + Hz Sz(R)] Q exp(zko R)H ~ S(R)
R R

As discussed in I, J(R) represents an isotropic
exchange coupling, while D(R) introduces an an-
isotropy energy aligning the spins along an "easy"
or "parallel" axis. The staggered, ordering field
is H, while H = (H((, H~) is a uniform external
field. We shall be concerned chiefly with the
case H =0 and H~=0, so that only &t~ acts. The
Hamiltonian (1) will be discussed in fuller detail
elsewhere. '

Our treatment follows lines developed' for dis-
cussing layered metamagnets (which display tri-
critical points'). As usual, ' we take the S(R) to
be continuous, classical variables subject to spin
weighting factors' e "t ' with W(S) = g Sl '+f

I SI '.
The essential step is then to introduce two spin
fields, s (q) and s (q), via.

s, (q)='- Z "'S(R)*.-' Z e'"'S(R), (2)
Rc:A Rc:8

where A and B denote the two interpenetrating
sublattices into which the lattice is decomposed
when the spins order antiferromagnetically. The
wave vectors q run over a reduced Brillouin zone
corresponding to a superlattice. This construc-
tion permits a transparent analysis of the order-
ing effects associated with competition between
two sublattices which might otherwise be missed.
The variables s+(q) and s (q) diagonalize the quad-

A renormalization-group procedure is then
initiated by (i) translating the spin va, riables in
order to eliminate the linear terms; (ii) reseal-
ing spatially by a factor b &1 and integrating out
the shifted spin variables o', (q) with wave vectors
then lying outside the Brillouin zone; (iii) reshift-
ing the spin variables to eliminate the new linear
terms generated; and (iv) introducing the distinct
spin rescaling factors c!I,+, c&+, c~~, c~, for the
corresponding spin components of o, (q). The c'
factors are chosen to keep the coefficients of
q'I o+

' (q)I' and q'I o'+ (q)I
' in the renormalized

Hamiltonian equal to unity, but the c factors
are chosen to keep constant the coefficients ~I~

and x~ of Io (q)I' and Io (q)I'. Under this
previously unexploited rescaling procedure, '
many terms in K become strongly irrelevant,
going rapidly to zero as the renormalization pro-
cedure is iterated. In particular, the momentum
dependence associated with the o (q) spins dis-
appears allowing these variables to be explicitly
integrated out of the problem. ' The resulting re-
duced, renormalized Hamiltonian contains no
terms of odd order in the remaining variables
0+, and may be written schematically in real
space as

XppJ 2 J (f R[~ ((o (('+
I «(( I'+~&&i'+

I «il '+2«(( +4~o(( &g +2va'J (4)

where the plus signs and arguments A have been
omitted. The quartic coefficients u, v, and m

are positive, vary slowly with T and H(( (taking
H~ = H =—0), and satisfy no special relations. The
basic (II((, T) variation is found to be

a(l (T —T (() + 12a, H((

XJ aJ (T TJ )+ 4a H((

where, for uniaxial anisotropy [i.e. , nonzero
D(R)], we have T(( &T» while a„a((, and a~ are
positive constants.

The analysis of K„& now follows standard lines. '

For small IIII, the parameter rtt becomes nega-
tive before ~~ does, as T is reduced, and the
system crosses over to standard Ising-like be-
havior, as shown by Fisher and Pfeuty. ' For
fields sufficiently large compared to (T(( —T~)'",
the reverse situation occurs, and (n —1)-iso-
tropic (i.e. , perpendicular or planar) critical be-
havior is realized. ' Below T, this changeover
corresponds to the spin-flop transition.

In the case of zero anisotropy [D(R) —= 0], the
relations aII ——a~ and T~I =- T~ hold, and the bicriti-
cal point occurs in zero field. A spin-flop tran-
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sition to (n —1)-isotropic ordering then occurs in any field, however small, since the inequality r~ & r~~

always holds for H~, 40. The associated crossover exponent, Q= Q„(n), is just that discussed by Pfeuty,
Jasnow, and Fisher' for anisotropic spin systems.

Assuming finite anisotropy [D(R)0 0], a new analysis is needed in the bicritical region where r i,
~ r~

By assuming thats, v, zv, ~t|, and r~ are all of order & =4-d, recursion relations are readily con-
structed to the leading order"' and found to be

[ r
11

+ 12' + 4f(n 1)w 12' ]] 4g(& 1}wrz]

r~'= P [r~+4f(n+1)v+4fw —4g(n+l)vr~ —4gwr~~],

u'=b'[u -36gu'-4g(n-1)w'],
u' = b'[ v —4g(n+7)v' —4gw'],

w' = h'w[1 —12gu —4g(n+1)u —16gw],

(6)

(7)

(9)

(10)

where f(b) =A'(6 ' —1)/8m' and g(l ) = Inb/8m'A'

arise from the usual Feynman-type integrals
over the outer momentum shell with cutoff A,
evaluated as d-4.

For any value of n () 0) the last three of these
equations determine six fixed points. Four of
these have w* = 0, and so represent decoupled
and, hence, tetracritical Hamiltonians: (a) u~
= v*=0 is the trivial, always unstable, Gaussian-
Gaussian point; putting e = 8rr'A 'e we have (b) u*
=e/36, v~ =0 which is an Ising-Gaussian point;
similarly, (c}u*=0, v*=e/4(n+7}, is a Gauss-
ian (n —1)-Heisenberg point; lastly (d) u*=e/36
v*=e/4(n+7) is a decoupled-Ising-(n —1)-Heisen-
berg fixed point. For rE & 11+O(e) all these fixed
points are found to be unstable to the w perturba-
tion s.

Of the two remaining fixed points the first,
which describes bicritical behavior, (e) is locat-
ed at

Q* =w* = v* = F/4(s + 8)

! with

r
~~

= r~ = -e(n+2)/2(n+8).

This is easily recognized as the fully isotropic
n-Heisenberg fixed point, "thus confirming the
statement reported in I and exploited there to
make numerical predictions. This fixed point
remains stable'"' ' in the full (M, v, w) subspa, ce
for n &n (d) =4-2m+c" e'+0 (e ), where' c"
=~[@(3)—1]. To evaluate this at d=3, a Pads
approximant to the series has been formed, with
the result n" (d) = (4+ 3.176m)/(1+ 1.294@)= 3.128
at & =1. The fact that both xt! and ~~ are speci-
fied at the fixed point indicates that bicriticality
is attained only at isolated points in the (H,

~
7)

plane, as anticipated. ' All the exponents asso-
ciated with this fixed point (including the cross-
over exponent P) are just those of the usual n

isotropic, Heisenberg model.
For n" (d) &n & 11+0(e), a new fixed point (f) fi-

nally becomes stable: This is located at

w* = ex/8, u *=(1+[1 —9(n —1)x']'"je/72, v* =f1+[1 —(n+7)x']'"f e/8(r +7),

r t~~ ——[12fm*+4(ri —1)fw*]/(5 2 —1), r~* =[4(n+1)fv*+4fw*] j(b 2 —1),

where x is the real root of

9(4n' y29n+ 88)x' —6(2n'+ 28n+ 179)x'+ (rl'+ 5n+ 472)x+ 6(n —11)= 0.

(12)

(13)

(14)

Although the appropriate root of this equation is
rational at n = 11 (x= 0), n =4 (x= -', ), n = 2 (x= -', ),
and at n = I and -1, the root is an irrational func-
tion of n; specifically, for n = 5, we have x
=[82- (a+hV'82)'"- (a —bv"82)'"]/333, where
a = 18 728 and 6 = 1998. The renormalization-
group eigenvalues, and thence the critical-point
exponents, can be calculated to order & through
(6) to (10) and again have irrational coefficients.

There is, for example, a cube-root cu~P in the
corresponding susceptibility exponent y~(b) at
n = 2 as shown in Fig. I.

In the region of stability it is not hard to show
that 0 &w* & f/(n+8) while u* and v* exceed
e/(n+8). Accordingly this fixed point then satis-
fies the condition (w*}2 & u*v* which represents
the phenomenological criterion" for tet~ac~itical-
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FIG. ]. Comparison of the exponents p and @ at the
new, biconical fixed point (solid curve) and the isotrop-
ic (Heisenberg) fixed point (dashed line) truncated at
order q and evaluated at e =1. Note that yz(n) has a
cusp at n=2.

ity, i.e., a new intermediate phase with both par-
allel and perpendicular order simultaneously
present is thus expected to appear below T, as il-
lustrated in I. Recall that the equation of state to
order e' is always given by the phenomenological
theory, and we do not expect the corrections of
order & and higher to alter such qualitative fea-
tures of the fixed point. [Note that the condition
for bicriticality, "namely, (tv*)' &u*v*, is satis-
fied at the Heisenberg critical point so that, with-
in the scaling regime, tetracritical behavior
should not be realizable for n &n" (d).]

Because of the symmetry implied by the un-
equal values of r~~* and ~~*, and by the values
of u*, v*, and so*, we call this new fixed point
"biconical. " Thus the spins tend to lie on an
"easy cone" with axis parallel to the original
easy axis, and with a conical angle determined
by n (via the fixed-point values).

The new, biconical susceptibility and cross-
over exponents, ys(n) and Ps(n), are plotted ver-
sus n in Fig, 1 according to the truncated expan-
sions evaluated at e =1. The corresponding, trun-
cated values of the n-isotropic exponents yH(n)
and &j&H(n) are shown for comparison. In fact, the
value for ys(n) falls only 0.01 or less below y„(n)
(at s = 1). [Likewise the values for ns(n) are only
slightly less negative than for aH(n). ] However,
the crossover exponent ps(n), to order c, stays
almost constant for 5 & n &11; by contrast p~(n)
rises quite rapidly towards yH(n) as n increases.

For ~ &11+0(s), the decoupled fixed point (d)
dominates. The Hamiltonian spontaneously breaks

into independent Ising and (n —1)-Heisenberg sys-
tems. As observed in I a single scaling function
cannot properly describe this fixed point. Rather,
the singular part of the free energy is the sum of
two distinct sca.ling functions. This mechanism
for the breakdown of scaling is a striking novel
feature of the renormalization group.

To obtain a fuller understanding of these aniso-
tropic systems, we have generalized the Hamil-
tonians (1) and (4) to include m

~~
parallel and m ~

= n —m
~~

perpendicular spin components. " The
results, ' to order &, show that the Heisenberg
fixed point dominates, as expected, for m~+m~~
& 4+O(e). If the relation

m ~~m~+2(m~~ +m~) &32

holds, the decoupled fixed point dominates. The
biconical fixed point determines the (tetracriti-
cal) behavior in the remaining region of the
(m„, m&) plane. While these biconical and de-
coupled fixed points are probably irrelevant to
simple magnetic and boson systems they may
well play a significant role in the description of
polycritical points in displacive transitions,
where crystal symmetries may introduce order
parameters of higher dimensionality.
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