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a second Maxwellian distribution with tempera-
ture T, » T,. and density n, «n, The above emis-
sion formulas are valid for a double Maxwellian
velocity distribution provided that, for the nth
harmonic, ' we replace T, in Is by (n, T,"+n,T,")/
(n, T," '+n2T2" ') and n, T," ' in foI, ds by n, T," '
+n, T," '. The measured ratios I,/I, and I,/I,
together with n, =n, and T, = T,o determine inde-
pendent values T, -36(1+2AT, /T, ) keV and n,
-8 x10"(1—76T,/T, ) m ', where hT, /T, is the
uncertainty in the measured electron tempera-
ture (+10@). Although sensitive to the peak val-
ue of T, (and to the assumed value of 1 r),-these
results are not significantly modified by differ-
ent profiles of T,(s).

One important characteristic of the spectrum
observed for high-runaway conditions (Fig. 2,
curve c) is the dominant broad peak at ~ -3.3&v„.
Overlapping of I, and I, in the region 3.2 «u/&u„
&3.6 could occur for flat profiles n, (s) and T,(s).
The above values of m, and T, are consistent with
the ratio of this broad peak to I,.

Discussion. —It is possible, in view of the un-
certain absolute calibration, to assume that the
second harmonic in Fig. 3 is fitted by the pre-
dicted curve for unpolarized emission [i.e., 2Is(&u)]
for the measured T, -300 eV. This change of
calibration implies that the fundamental emission
should be above the limit of detectability. How-
ever, the extraordinary-mode fundamental would
be reflected in the decreasing B~ at the upper-
hybrid region, ""leaving the ordinary mode be-
low detectability, consistent with observation.

On the other hand, if I, really is well above
2Is (Fig. 3) then we have to explain the supra-
thermal emission even for n = 2.

The main implications of this work are that

(i) diagnostic applications may be confused by
runaway phenomena, and (ii) the power balance
of a fusion reactor may be adversely affected by
the enhanced cyclotron emission arising from the
depolarization and the runaway effects.
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The Rayleigh-Taylor instability in laser-driven spherical implosions can be stabilized
by convective flow and by the "fire-polishing" effect, but the size of the stabilization ef-
fect depends on details of the thermal conductivity near the ablation surface.

In the basic concept for laser-pellet fusion, a.
dense cold shell of compressed deuterium-tritium
is accelerated radially inward, while being com-
pressed in a nearly adiabatic fashion. ' When the

shell reaches the center, it heats, ignites, and
produces thermonuclear burning. The dense
shell accelerates inward because of a sharp tem-
perature front that continually ablates the outer
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FIG. 1. Density, pressure, and temperature versus pellet radius, at one time, for a typical pellet implosion

calculation.

edge of the cold compressed shell. Figure 1

shows sample radial profiles at one time of the
mass density, electron temperature, and pres-
sure, taken from a recent calculation by Nuc-
kolls and Thiessen.

In the accelerating frame moving with the abla-
tion front, we have a dense fluid adjacent to a
light fluid, with an effective outwardly directed
gravitational force. This is the standard situa-
tion for the occurrence of the Rayleigh-Taylor
instability, but with numerous modifications that
are unique to the laser-pellet fusion concept.
There have been several recent, and apparently
conflicting, computer studies of Rayleigh- Taylor
instability as it relates to laser-pellet fusion.
The only analytic work so far has been an unpub-
lished derivation of the stabilizing effect of "fire
polishing. " As the Rayleigh- Taylor instability
grows, the peaks will be closer than the valleys
to the la.ser deposition surface. The temperature
gradients will thus be larger and the ablation
faster at the peaks. This is the stabilizing "fire-
polishing" effect.

Consider a model problem to isolate the effects
of convective flow and of fire polishing. Also
consider a slab geometry with two incompress-
ible fluids connected by an ablation surface at x
= $(y, t). In this model problem, the equilibrium
will be time independent, in the frame moving
with the ablation front. In the laser-pellet fusion
designs, the equilibrium actually changes on the
nanosecond time scale. In order that our model

be applicable to the pellet designs, attention is
restricted to instability wavelengths such that
the equilibrium does not change on the time scale
of the growth rate. Without stabilization effects,
y = (kg)'~ . At the sample time shown in Fig. 1,
g =1.5X10" cm/sec'. Thus I restrict my atten-
tion to wavelengths much less than 100 pm. I
find, in fact, that under some circumstances the
large-0 modes are stabilized. More rigorously,
I can only claim that I will show that large k
modes grow no more rapidly than on the nanosec-
ond time scale, because this is the time scale
for changes in the equilibrium.

The perturbations in the high- and low-density
regions can be treated as incompressible if the
velocity of the plasma relative to the ablation sur-
face is subsonic. In Fig. 1, the plasma becomes
supersonic at about 230 pm. This supersonic
flow will reduce the growth rate of perturbations
with wavelength greater than or of the order of
35 p.m.

The scale height at the ablation surface is less
than 1 pm in Fig. 1. The finite gradient will limit
the growth rate of perturbations with wavelength
less than 1 p.m.

Viscosity is important for perturbations such
that y/(vk ) &1 or yde/v&1. Here y is the growth
rate, v is the specific viscosity at the ablation
surfa, ce, k is the perturbation wave number, and
d is the thickness of either the dense or the light
fluid. At the ablation surface the ion tempera-
ture is less than 100 eV, so that viscosity is un-
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important.
For all x and y use the one-fluid equations

Bp/Bt + V ~ (pv) = 0,

B/Bt (pv)+ V ~ (pvv) = —VP+pg. (2)

For x&0, there is one relation between the per-
turbed quantities, in the limit x-0:

It II
pit+ ip IIV tlv If 0 v It+ g 0 pll 0 (13)0 0 y k x ++k+ tr

0

= pv g+1(5)~(x —5) (4)

I have modeled the electron thermal diffusion
by a 5(x —$) deposition, with an I(() dependence
to model the fire-polishing effect.

In the zeroth-order, time-independent equilib-
rium, the fluids have uniform density and veloc-
ity: p, ' and v0' for x&0, p," and v0" for x&0; g
=+ ge„, with p,"«p, '. Because the Rayleigh-
Taylor instability involves surface motion, we
write the hydrodynamic terms, with first-order
perturbation, as

g(x, y, t) = go(x) —](y, t)a(qo)5(x)

For xe $, the fluids will be treated as incom-
pressible:

V v=0, xe(,
For the jump conditions across the ablation front,
use the model heat equation

B/Bt ( pe + —,pv') + V [v ( pe + ,pv'+—p)]

P, '(() = P'($)+ p' g$ =PPO'(0)$/L, (14)

where P is some unknown constant, of order 1,
or perhaps much less than 1, depending on the
unspecified details in the energy transport.

V~e now obtain a cubic dispersion relation,

Note that p" is not necessarily zero, because it
can satisfy the relation y P" + vo" 8 p" /Bx = 0 with
the for m exp (- yx/v, ").

We now have eight equations, (6)-(13), for nine

If we expand the ablation region to a nonzero
thickness, (g —a) &x (/+ a), then at x.= g —a the
density, velocity, and pressure should be contin-
uous. The density is p, '. If we specify the tem-
perature at x = g —a, we will have our ninth equa-
tion. The temperature just inside the ablation
region is determined by the previous adiabatic
compression, the thermal heat transport, and by
suprathermal energy transport. As the ninth
equation, we will assume that

+ P(x, y, t), (5) ucr'+ [u~ —(1 —P)]o + [u —2u(1 —P) + eus(]. + p)]o

—ygb, (p,)+b, (p,V„+ pv, ) =0,

b, (p+ pv, '+ 2p,v,v„) = —$gh(p, ),

6(V„+ ik)v, ) =0,

$P&)vok(vo)+ 6(2 PVO+ 2 Povx+ 2 Pvo

+ 2 povo' V„) = I($) —l(0) —= $ I(0)/L.

For x & 0, the perturbed quantities satisfy the
relations

Vy' = ZVX

(6)

(10)

where b (go) is the jump in the zeroth-order quan-
tity across x=o, and $(x) is bounded for all x and
goes to zero as x-+ ~. Here g represents any
of the quantities appearing in Eqs. (1)-(4): p, v„,
v„P, pv„', pv„v, , etc. The fluid equations have
been written in the form of a complete derivative
in x to avoid ill-defined quantities such as 5(x)S(x),
where S(x) is the step function.

I look for solutions of the perturbed quantities
of the form exp(yt+ iky), and obtain a set of jump
conditions:

+ [(1 u2)(1 —P)+ e'pu'] = O, (15)

with o=y/(kg)"', e = p, '/p, ", u=kv, "/(kg)"', and
P = pkp, '(0)/(p, 'g). In deriving this equation, we
have assumed that v0" is small compared to the
acoustic velocity, and «&1, but with no ordering
assumptions on u or o. If the distance between
the ablation surface and the laser energy deposi-
tion surface is D, and if kD» 1, then one can
show that kI.=—1.. This approximation has been
used also.

If we set u = 0 (a singular point in the cubic
equation), the solution is x=+1, the standard
Rayleigh- Taylor result when e «1.

In the standard Rayleigh-Taylor theory, y- ~
as k- ~. From Eq. (15) we find that y now has a
maximum and then goes to zero for finite k. The
maximum k for instability is the larger of g/v, " '
and g p, '/p p, '(0).

If we ignore the fire-polishing effect by letting
P - 0 and kL -~, instead of kL = 1, we obtain the
stabilization due solely to convection:

p = —po (y/k+vo )v„

p'=0.
(11)

(12)

y = (kg)'~' —kvo'.

If we add in thermal conduction, kL=1, but keep
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P =0, we obtain a weaker stabilization effect:

y =——~ kvo'+ (kg+ —,
' k2vo")'~ . (17)

Combining this with the definition of p, we obtain

Thus under some circumstances, fire polishing
can be destabilizing. Even though the peaks ab-
late faster than the valleys, the perturbed flow
in the dense fluid is such as to move the peaks
outward.

The stabilization phenomena depend on the pa-
rameter P, which in turn depends on details in
the thermal conductivity in the region of the ab-
lating surface. This result is similar to the gen-
eral theory of weak deflagrations, ' where one con-
cludes that the fluid velocity relative to the abla-
tion surface depends upon heat conductivity, and

is not totally determined by the Rankine-Hugoniot
relations. In weak deflagrations, such as in the
laser-pellet implosion, one can derive the ap-
proximate relation

The physical mechanism behind this mode is un-
known.

This research was intended as a model calcula-
tion to examine some stabilization mechanisms
for Bayleigh- Taylor instability, to give insight
into some of the important physics, to give guide-
lines to interpreting computational results, and
to indicate the basic parameters of interest. In
the case shown in Fig. l, the acceleration is 1.6
&&10" cm/sec'. Using Eq. (18), find that p=—0.7.
The maximum wave number is then 700 cm '.
But because of the many assumptions in this the-
ory, this value should be treated with some skep-
ticism. Also because of the flexibility in laser-
pellet fusion designs, one cannot draw any over-
all conclusions at the present time about the im-
portance of Rayleigh-Taylor instability in laser-
fusion, except to note that there are stabilization
mechanisms.

I wish to thank Ray Kidder for suggesting this
problem, and for his continuous encouragement
while it was being solved.

1 Pq' dvq' /dt

P v,"dP, '/dt (18)

y g /v II kv lf (19)

There are a number of inherent assumptions
that give lower k limits to our theory's validity.
Because the dense fluid should have a finite thick-
ness d, we have k &1/d. Incompressibility in the
dense fluid requires that an acoustic wave be able
to travel one wavelength in one e-folding time:
kv„&y, where v„ is the mean acoustic velocity
1/k in from the ablation surface. If y = kg, we
find that k &g/v„'.

Finally, for small I', there is another unstable
root of Eq. (15), which is driven by the convec-
tive behavior, and is not of the Rayleigh-Taylor
type. It satisfies the dispersion relation
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