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Electron Cyclotron Emission from a Tokamak Plasma: Experiment and Theory
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We present the first measurements of the power, polarization, and frequency spectrum
of the electron cyclotron emission from a tokamak plasma. The radiation is not polar-
ized, does not have the previously predicted spectrum, and under certain circumstances
is an order of magnitude above the predicted power level. We interpret the results in
terms of a scrambling of polarization on reflection within the torus and in terms of the
emission from suprathermal electrons.

Electron cyclotron emission from hot toroidal
plasmas is currently of importance in fusion re-
search. It is anticipated that it could constitute
a significant power loss in a reactor" and that a
measurement of it could be an informative plas-
ma-diagnostic technique. In this Letter we pre-
sent measurements of the electron cyclotron
emission (occurring at millimeter wavelengths)
from the hot plasma of a tokamak device.

The plasma investigated is produced by the
CI EO tokamak. ' It has a toroidal flux density
B~ (2.0 T, a mean electron density n, -2&&10"
m ', a central electron temperature T,0-300 eV,
a central ion temperature T,-, -200 eV, a major
radius Ro= 0.9 m, a minor radius a, = 0.18 m,
and duration up to 180 msec.

Emission measurements. —These were made
by observing the plasma along a major radius
through a wedge-shaped window of crystal quartz
(Z cut). Radiation from the plasma was directed
into a two-beam polarization-type interferometer. '
The path difference (x) within this was scanned in
10 msec over the range —1 &x (9 mm by oscilla-
tion of one of the interferometer mirrors, and
the resulting interference patterns (Fig. 1) were
detected with a Putley indium antimonide detec-
tor. (The spectrally integrated emission was al-
so detected for reference purposes. ) Subsequent
Fourier transformation of the interference pat-
terns and calibration of the apparatus yielded the
emission spectra.

In the calibration the time dependence of the
path difference was measured by using an HCN
laser (X =337 p, m) and the absolute power re-
sponse of the interferometer-detector arrange-
ment was determined with a dc mercury arc
lamp. Such lamps have been shown previously'
to radiate approximately as a black body with a
radiation temperature of 3000 K.

The emission spectrum from a typical tokamak
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FIG. 1. Signal from the interferometer showing two
scans of the interference pattern, traversed in opposite
directions. (Time is from initiation of discharge. )

shot is shown in Fig. 2 (curve a). The resolution
in the spectrum is determined by the total scan
x used in the Fourier transform, 8 = cx ', and
in this case is 37.5 GHz. As expected, emission
peaks occur at the cyclotron harmonics (n~„)n
=2, 3, and 4 for the magnetic field B, at the cen-
ter of the plasma. The emission at n =1 (i.e., I,)
could not be deduced by the normal procedure
since the calibration system was insensitive in
this region. However, from the known respon-
sivity of the Putley detector an upper limit can
be placed on I, as in Fig. 2.

By combining data recorded on two identical
tokamak shots, spectra with an improved resolu-
tion of 25 6Hz were obtained (Fig. 2, curve b).
A mirror in the fixed arm of the interferometer
was displaced between the two shots so that ad-
jacent parts of the interference patterns were
scanned, and composite interference patterns
were constructed and transformed.

Variation of the tokamak conditions revealed a
clear correlation between the level and spectrum
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adjacent to the entrance port (y = 20') was partial-
ly polarized that from other ports with y ) 90'
was less than + 10% polarized, demonstrating that
multiple reflections within the torus can depolar-
ize the radiation.

Theory for polarized emission. —We consider
the cyclotron emission from a toroidal plasma in
the direction of the major radius" (nonrelativistic
limit for T, -300 eV). The intensity' I,(&o) in
each mode (extraordinary, g=e; ordinary, g=o)
is given by'

1 —exp(- fc(, ds)
s 1 -r exp( f{)-.,ds) '

where {),(&u) is the absorption coefficient of the
plasma, Is = &u'h T,/87('c' is the black-body inten-
sity for a single mode, and r = r((d) is the reflec-
tion coefficient of the metal wall bounding the
plasma. The spatial contributions are integrated
across the toroidal profile with arbitrary n, (s),
T,(s), and defined B(s) = B,(1 -s /Ro), !s!)a,.
For each & and harmonic n, the resonance ~
=n~„(s„)defines the position s„,so that

(o,e) ~ {o,e) +p( (e,o) (o,o))i~

and the transport equation with n, =0 yields a
solution

1 —exp( f n, d—s)
s 1 r" ex—p( fa, d-s)'

(3)

Figure 2 shows the predictions of this model
for the parameters of the CI Eo tokamak with the
measured parabolic n, (s), assuming a parabolic
T,(s). Under low-runaway conditions (Fig. 2,
curves a and b) we find that (i) the measured ab-
solute magnitudes exceed the predictions by
more than the estimated factor-of-3 uncertainty;
(ii) the measured ratios, I,/I, and I,/I„ofthe
intensities of the harmonics yield the electron
temperatures 280 eV and 1.1 keV, respectively;
and (iii) the main discrepancy is the observed
absence of polarization,

Theory for unpolarized emission. —We now as-
sume, on the basis of the subsidiary experiment
mentioned above, that each reflection produces
some scrambling of the polarizations. We define
a transfer fraction p between the two polariza-
tions at each reflection. The boundary condition
for the reflected intensity I' then becomes

o=i ' " 2mc'. (n —1)! 2e,B~ (2) I,=I,rp/(1 -r+rp),

TABLE I. foods for the CLEO tokaxnak and 1 —r{a)
for stainless steel.

fo(, ds 1-r(e)

1.00
2.96x10 3

1 46x10

5.46&&10 3

6.69 x 10
7.72x10 3

while o.,=0. The values of fo.,ds for the CLED
tokamak are listed in Table I together with 1
-r(a&) for stainless steel. We note that harmon-
ics n(3 are optically thick (fn, ds»1-r), har-
monics n &3 are optically thin (fo(, ds «1-r),
while harmonic n =3 is intermediate, and that
T, can be determined from the ratio of any two
harmonics provided they are not both optically
thick.

The spectral widths of the various harmonics
are determined by the toroidal inhomogeneity of
the field, which gives an overlap of harmonics
n= 3 and 4. However, provided the profiles of
n, (s) and T,(s) are not particularly flat, the main
emission peaks can be calculated separately.

where

r =r[1 -p(1-r)/(1 r+rp) j. -
From these equations we see that the emission

is completely unpolarized, i.e., I,=I, for all n,
when 1 -r «p; and that for optically thick har-
monics the total intensity, I,+I,=2I~, is double
that found when p = 0, while for optically thin
harmonics the total intensity, I.+I, =isfo(, ds/
(1 -r), is the same as for p = 0.

The predictions of this theory are plotted in
Fig. 3. The observed absolute magnitude of I,
exceeds the prediction by a factor 3.4, just out-
side the estimated uncertainty. The observed
ratios of the peaks yield predicted electron tem-
peratures of 400 eV (I,/I, ) and 1,4 keV (I,/I, ).
Even allowing for the calibration uncertainty, the
discrepancy in I4 is large and we must look for
an alternative explanation for this emission, in
particular, in terms of runaway phenomena.

Emission saith runaway electrons. —In the pres-
ence of a longitudinal electric field the electron
distribution function contains a high-energy run-
away region and a region of isotropic enhance-
ment of the Maxwellian tail at lower energies.
For simplicity, we simulate these distortions by
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a second Maxwellian distribution with tempera-
ture T, » T,. and density n, «n, The above emis-
sion formulas are valid for a double Maxwellian
velocity distribution provided that, for the nth
harmonic, ' we replace T, in Is by (n, T,"+n,T,")/
(n, T," '+n2T2" ') and n, T," ' in foI, ds by n, T," '
+n, T," '. The measured ratios I,/I, and I,/I,
together with n, =n, and T, = T,o determine inde-
pendent values T, -36(1+2AT, /T, ) keV and n,
-8 x10"(1—76T,/T, ) m ', where hT, /T, is the
uncertainty in the measured electron tempera-
ture (+10@). Although sensitive to the peak val-
ue of T, (and to the assumed value of 1 r),-these
results are not significantly modified by differ-
ent profiles of T,(s).

One important characteristic of the spectrum
observed for high-runaway conditions (Fig. 2,
curve c) is the dominant broad peak at ~ -3.3&v„.
Overlapping of I, and I, in the region 3.2 «u/&u„
&3.6 could occur for flat profiles n, (s) and T,(s).
The above values of m, and T, are consistent with
the ratio of this broad peak to I,.

Discussion. —It is possible, in view of the un-
certain absolute calibration, to assume that the
second harmonic in Fig. 3 is fitted by the pre-
dicted curve for unpolarized emission [i.e., 2Is(&u)]
for the measured T, -300 eV. This change of
calibration implies that the fundamental emission
should be above the limit of detectability. How-
ever, the extraordinary-mode fundamental would
be reflected in the decreasing B~ at the upper-
hybrid region, ""leaving the ordinary mode be-
low detectability, consistent with observation.

On the other hand, if I, really is well above
2Is (Fig. 3) then we have to explain the supra-
thermal emission even for n = 2.

The main implications of this work are that

(i) diagnostic applications may be confused by
runaway phenomena, and (ii) the power balance
of a fusion reactor may be adversely affected by
the enhanced cyclotron emission arising from the
depolarization and the runaway effects.
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The Rayleigh-Taylor instability in laser-driven spherical implosions can be stabilized
by convective flow and by the "fire-polishing" effect, but the size of the stabilization ef-
fect depends on details of the thermal conductivity near the ablation surface.

In the basic concept for laser-pellet fusion, a.
dense cold shell of compressed deuterium-tritium
is accelerated radially inward, while being com-
pressed in a nearly adiabatic fashion. ' When the

shell reaches the center, it heats, ignites, and
produces thermonuclear burning. The dense
shell accelerates inward because of a sharp tem-
perature front that continually ablates the outer




