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Ion-Ion Beam Instability in a Cyundrical G ometry
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The ion-ion instability is studied in a cylindrical double-plasma device. Low frequency
cylindrical standing waves are found which are one-dimensional in character with fre-
quency proportional to beam velocity. An approximate dispersion relation for the cylin-
drical standing waves is derived.

Double-plasma (DP) devices have recently been
used to study the incoherent ion-ion two-beam in-
stability produced by one-dimensional beams in
unmagnetized plasmas. ' ' This turbulence is
found to be three-dimensional in character in
agreement with the linear theory of the ion-ion
instability' ' which predicts that the instability
depends on k-v„where k is the Plane-wave prop-
agation vector and v, is the beam velocity. Al-
though there is an upper limit on v, beyond which
the one-dimensional ion-ion instability will not
grow, there always will be oblique directions for
which the projection of v, on k will give growing
modes in Nxee dimensions. Means et al. ' have
recently argued that the observation of turbu-
lence in experiments with one-dimensional elec-
trostatic ion acoustic shocks depends fundamen-
tally on this three-dimensional property of the
instability.

In this Letter we report the production of a
coherent ion-ion instability which is essentially
one-dimensional in character. This has been ac-
complished by generating cylindrical standing
waves which are resonant with ingoing and out-
going beams in a cylindrical DP device at the
University of Iowa. This device differs from con-
vential DP devices' ' in that the cylindrical bound-
ary of the plasma plays a dominant role. A
grounded cylindrical screen through which the
beam in injected, serves as a well-defined bound-
ary condition (vanishing potential) for the stand-
ing waves. In conventional devices' ' the dimen-
sions were such that wave and particle phenom-
ena were not significantly affected by the pres-
ence of boundaries. The dimensions of those de-
vices were large compared to the ion charge-ex-
change length, the e folding distance for ion-
acoustic waves, and all wavelengths of interest.
In the cylindrical DP device described here the
diameter of the plasma is comparable to these
lengths.

A description of these standing waves is de-
rived from the Vlasov equation in a cylindrical

geometry. The dependence of the frequencies co

of the instabilities on the beam velocity is shown

to be remarkably similar, but not identical, to
the results for a strictly one-dimensional ion-
ion instability.

The cylindrical DP device, which has recently
been used to study cylindrical solitons, " is shown

in Fig. 1. Two concentric argon plasmas are
separated by an outer negatively biased screen
and an inner screen held at ground potential.
Plasma within the inner cylinder is produced in

an adjacent connected chamber. Typical operat-
ing parameters were electron temperature T,
=1 eV, ion temperature T, =0.1 to 0.2 eV, aver-
age plasma density n,. —10' to 10' cm ', and pres-
sure = 2x10 Torr. A steady-state radially in-
going cylindrical beam is formed by raising the
plasma potential in the outer cylinder. Beam
density ratios r~

—= n, /n, . are controlled by varying
the concentric discharges. The ion charge-ex-
change length was greater than the inner-cylin-
der radius.

Energy distribution functions in the inner plas-
ma (region A in Fig. l) are measured with two

energy analyzers with depth-to-area ratios great-
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Flo. 1. Cylindrical DP device with two insulated con-
centric plasmas. The inner plasma is produced in the
right half of the device. Beam energy is controlled by
varying 4». @z, filament supply voltage; @+ filament-
to-wall voltage; @z, applied bias voltage. &,=1.0 eV;

0.2 eV; Ao=1.0 -10 cm 3; pressure, 2&10 Torr.
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FIG. 2. Typical radial and azimuthal energy-analyzer
traces at 5 and 8 cm are shown. Similar traces are ob-
served for radii less than 6 cm indicating the presence
of a ring distribution function in velocity space. The
absence of an azimuthal beam at 8 cm is apparent.
Azimuthal traces are found to be independent of g.
Broadening of these traces is instrumental.

er than 1, whose radial coordinates can be va-
ried. One energy analyzer measures the energy
distribution function of particles with velocities
in the radial direction, another observes the
energy in the p direction. A third measures out-
going energy distribution functions in the outer
plasma (region B in Fig. 1). Typical energy-
analyzer traces are shown in Fig. 2. Near the
inner screen the beam is seen to be radial. For
radii less than 7 cm we find approximately equal
radial and azimuthal beam components, indicat-
ing that the beam forms a ring in velocity space.
The spatial region over which the ring distribu- .

tion function exists is determined by the beam
velocity, and the separation and mesh size of the
two concentric screens. The region increases
for smaller energies. The presence of a ring
distribution function rather than a purely radial
beam results in a uniform beam density (x& 7

cm) with no steady-state electric field. This
facilitates a theoretical description of the in-
stability.

FIG. 2. {a} Power spectra showing the first three
harmonics as a function of beam velocity. (b) Frequen-
cy versus beam velocity for the three lowest harmon-
ics. No growing modes are observed for v& &0.9 &&105

cm/sec aud for ~~&2.2&&10~ cm/sec.

Instabilities are detected by positively biased
Langmuir probes oriented in the axial direction
and by the energy analyzers. One Langmuir
probe is variable in the radial direction and the
other is variable in the q and axial directions.
Langmuir probes indicate that relatively uni. -
form background plasma and beam densities are
achieved in this device. Langmuir-probe mea-
surements within the inner cylinder (region A in
Fig. 1) showed no y or z dependence (except near
the cylinder ends).

A comparison of signals simultaneously ob-
tained at different positions showed that the in-
stability was inPhase throughout the inner plas-
ma, demonstrating that standing waves were pro-
duced. Therefore it is meaningful to consider
power spectra. Typical instability power spec-
tra as a function of beam velocity are shown in
Fig. 3(a). For high beam velocities we observe
no instability. The onset of the instability is
seen for a beam energy of approximately 1.0 eV.
For beam energies less than approximately 0.2
eV the instability disappears. As the plasma po-
tential of the outer plasma is made less than the
potential of the inside plasma we observe inco-
herent instabilities between the outer cylindrical
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screen and the outer walls of the chamber (re-
gion B in Fig. 1).

Measurements of the power spectra in the ra-
dial direction show that the three lowest frequen-
cies correspond to resonant modes with no nodes,
one cylindrical node, and two cylindrical nodes,
respectively, further demonstrating cylindrical
standing waves. Figure 3(b) shows that e is
roughly proportional to v, for the first three har-

monies. In addition, the second and third har-
monics have approximately 2 and 3 times the fre-
quency of the first. This suggests that u/k„= nv„
with n constant, describes all three modes, with
k„varying approximately with the mode number.

These results can be understood by consider-
ing the linear Vlasov equation in cylindrical geo-
metry. The Vlasov equation can be written for
one component (ions or electrons) in the follow-
ing way:

Qa af t af ~f af
at "ar ~ray ~m " & av„(m ~ "~ av

For a stationary homogeneous equilibrium distribution f,(r, v„, v ) with E =0, we find v r '(v fo/av,
—v„af /av ) =0. This means that the zeroth-order distribution function depends only on the magnitude
of the velocity, f, =f,(v) =f,((v„'+v ')' ']; i.e., the distribution is concentric in velocity space and the
beam must be a ring. Experimentally, we find such a distribution function extending from the center
to within 3 cm of the inner screen for beam energies less than 2 eV.

Perturbing the plasma, we write f (r, v', t) = nofo(v) +f,(r, v, t), where f,(r, v, t) is given by

f,(r, v, t) =f,'dt, V4(r, (r, v, t —t,), t,}~ af, (v)/av, (2)

with 4 being the electrostatic potential. The time integral is taken along the straight-line orbits of
the unperturbed state. In evaluating the time integral we consider the plane-propagating waves 4(r, t)
=4,exp[i(ax+by —vt)J =4, exp[i[kr cos(p —n) —vt]j. Then the integral in Eq. (2) can be performed to
give

e, kv cos(O- n) af, (v)
m ' kv cos(& —n) —(u v av

In writing Eq. (3) and the potential we have used the following definitions:

x =y cosy, y =y sing, v„=v cos8, v, = v sine, a =k cosa, b =k sinn.

(3)

When calculating the density from Eq. (3) by integrating over v and O, we note that the dependence of
cos(O —n) on n can be suppressed because O is integrated over all angles. Thus we obtain for the
density

n(r, t) = f, v dv f' "dOf, = (e/m)n04 (r, t)k'G (u&/k, f,),
with

(4)

In order to express the density in cylinder functions we let 4, depend on n, 4,(n) = (4 „/m) exp(ivn
—vw/2), and integrate over n. A change of the variable n to tv=A+ y and an appropriate extension of
the limits of the integral to infinity produces the integral representation of the Hankel or Bessel func-
tions Z„(kr) exp(ivy). Thus we can write

n(r, t) = (e/m)4 „Z„(kr)exp(i vy)G .
The densities have to be inserted into Poisson's equation,

—V'4 = 4 n Q,. e,. n,

(6)

We note that Z, (kr) exp(ivy) is an eigenfunction of the Laplacian. This shows that cylinder functions
are eigenfunctions of the beam-plasma. system. For the boundary conditions of the experiment, 4 =0
on boundary, we obtain directly v =0, kA =n, , where n, is the p. th zero of the Bessel function J,(p).
It is important to notice that these are the only nonsingular solutions and they represent standing
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waves. The dispersion relation is found from Egs. (7), (6), and (5):

D(k, &) =1-+&@~,G, =l-g&u~, 'k .' J,"vdvf,"de„- " =0.

Note that k = n, /A. k is not a Plane w-ave propagation vector.
We consider now a background plasma with Maxwellian ion and electron distributions with T,» T,

In addition we have a radial influx of ions of velocity v„which can approximately be described by

f~ (v) = (n, /2z'u, )5(v —v, ). From the Penrose criterion it follows that for small v, the system is stable
as well as for very large U,. Both effects have been observed experimentally [compare Fig. 3(b)].
From the assumed distribution functions we find for very small ion beam density (rI «1) and for v,
x (k T,/m, .)'i' =—c,

(u =+kv,[l+—'rj exp(2wi/3}c, (v —c ) ' 3]

For the case of resonance (v, = c,}we find ~ = +kv„[1 +,'r l~—' exp(2 vi /5)]. The experimental proportional-
ity of v with v, is evident from Fig. 3(b}which corresponds to q =0.2.

In conclusion we have shown that low-frequency cylindrical standing waves which depend only on r
are produced by the ion-ion beam instability in a cylindrical DP device. We have shown that their fre-
quency is roughly proportional to the beam velocity. We believe that this is the first time that a coher-
ent ion-ion beam instability has been observed. We ascribe this to the high symmetry of the experi-
ment which substantially reduces the off-axis modes. We have derived a dispersion relation for the
coherent cylindrical-standing-wave instability from the appropriate Vlasov equations for the cylindri-
cal geometry. This predicts unstable standing waves with &u/k„proportional to t ~ rather than travel-
ing waves.
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