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The singular-eigenfunction-expansion method for solving the transport equation is ap-
plied to a modeled kinetic-theory Boltzmann equation to solve the problem of evaporation
and condensation between parallel surfaces. A remarkable result is obtained for the
temperature profile which seems to confirm previous predictions made on the basis of
asymptotic approximations.

In a recent paper, Pao' suggested that the slope of the temperature profile of a saturated vapor be-
tween two parallel surfaces at different temperatures could be in opposition to the imposed gradient
for certain values of p, where AX=PAT in a saturated liquid-vapor system. Here %represents the
molecular density and T the temperature. Pao's prediction was based on an asymptotic analysis for
large gap width, and used results obtained for the half-space problem' by applying the Wiener-Hopf
technique to a modeled Boltzmann equation.

We have approached the same problem through the singular-eigenfunction analysis of Kriese, Chang,
and Siewert, also used by Thomas and co-workers, ' and have avoided any asymptotic approximations.
Thus for the first time, inverted temperature profiles and critical values of P are calculated explicitly.
The surprising result is that our analysis seems to confirm Pao's novel prediction.

We consider the problem of a vapor between two interphase (vapor-liquid or vapor-solid) surfaces
maintained at x =+d/2; we assume that the condensed phase in x &-d/2 is kept at temperature T, —2b T
and that the condensed phase in x ) d/2 is kept at temperature To+ ~ET. As a result of evaporation and
condensation there is a flow of mass and energy from x=+ d/2 to x= d/2. Within th-e vapor, we as-
sume the state of the fluid to be described by the linearized single-relaxation model of the Boltzmann
equation':

c„sf(x,c)/sx+f(x, c) =n "[X(x)+(c' —+)T(x)+ 2c„II(x)j.

Here f(x, c) is the perturbation of the particle-distribution function, x is the spatial variable, c is the
molecular velocity, and c„ is the x component of the velocity, all in dimensionless units. In addition,
N(x), T(x), and U(x) represent perturbations of the number density, the temperature, and the x com-
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ponent of mass flow:

N(x) = ff(x, c)exp(- c') d'c,

T(x) = f ff(x, c)(c' —a2) exp(- c')d'c,

(2a)

(2b)

U(x) = ff(x, c)c„exp(- c') d'c.

Since it follows from Eqs. (1) and (2c) that U(x) is a constant, we find it convenient to introduce

h(x, c) =f(x, c) —(2/ws")c„U,

and subsequently consider the equation

c„sl),(x, c)/ex+a(x, c) = v "'[N(x)+ (c' —am)T(x)].

(2c)

(3)

(4)

(5)

1
N(x) = m"'( f e(xg„) exp,(- v, *)du, ,

We are interested here only in density and temperature effects, so we may decompose the equation in
the manner discussed by Cercignani' to obtain

q &@(x, q)/& + e (x, q) = ~ "'q(;i)f"q'(p') e(x, (
') e~(- q")d q',

where Q(p. ) is a matrix of polynomials. The variable p, now represents the x component of the veloc-
ity, and 4(x, p, ) is a two-vector simply related to the density and temperature of the gas:

oo 2 —T

T(x) = as)T'" 4(x, p) exp(- p.')dp.
1

We use the superscript T to denote the transpose operation.
At the two interphase surfaces, we assume that the vapor molecules striking the surface are ab-

sorbed and re-emitted with a Maxwellian distribution of velocities characterized by the temperature
at. the respective surface. Hence the linearized boundary conditions are

f(+~~, c) =+2[&&+ (c' —a, )aT], c„)0,

where 5 is a nondimensional distance and 4N= Pb, T, with P the slope of the saturated-vapor-density-
temperature curve. Couched in terms of the vector 4(x, p), we find this boundary condition to be

2w "'U
4(v tl*g)=vW-, ir ,

' ), g)0.

In E(l. (9), for notational convenience we have absorbed into U and 4 a factor (b, T) '.
From an asymptotic solution for large 5, Pao' has predicted that for certain values of P the slope of

the temperature profile in the main body of the vapor will be in opposition to the imposed temperature
gradient. It is our purpose here to investigate this prediction by solving for the temperature profile
with the use of the singular-eigenfunction-expansion techni(lue, developed for Eq. (5) by Kriese, Chang,
and Siewert. 3

Kriese, Chang, and Siewert' have expressed a general solution of Eq. (5) as
2 4 2

e(x, p. )= QA I „()L(,)+ QA„e (x, p. )+ Q f„A„(7l)@ (g, p)e "'"dg, (10)

where the C„(p), 4„(x, p), and C (g, )u) are the normal modes given explicitly in Ref. 3, and the A„,
a= 1, . . . , 4, and A„(q), a=1 and 2, are expansion coefficients. Substituting this general solution into
E(l. (7) for the temperature perturbation, we find

T(x) = —(2/3m)' ~A~x —(2/v) f, A, (g) sinh(x/q) exp(- g') dq,
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FIG. 1. Temperature and density profiles for P =8
and 4=2.
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so that it is clear that we must determine the ex-
pansion coefficients A~ and A, (g) in order to estab-
lish the temperature profile. Using the solution
(10) in the boundary conditions given by Eq. (9),
we find a coupled pair of singular integral equa-
tions for the expansion coefficients. We then
may apply the half-range (p &0) orthogonality the-
orem of Kriese, Chang, and Siewert~ to convert
these singular integral equations into a coupled
pair of Fredholm integral equations. We have
found that iterative solutions of these Fredholm
equations converge very rapidly, so that solutions
for the expansion coefficients may be straight-
forwardly obtained, with great precision.

In Fig, 1, we give a plot of a typical tempera-
ture profile obtained from our calculations. It is
clear that in the center of the gap, the slope of
the profile is in opposition to the imposed gra-
dient and thus very large temperature slips oc-
cur at the boundaries. The accompanying density
profile is consistent with this temperature profile.
We found that for all values of P greater than a
"critical" value, P, (6), the computed temperature
profile was in opposition to the imposed gradient.
We define P, (5) as that P for which

By solving the coupled Fredholm equations men-
tioned above in conjunction with the constraint of
Eq. (12), we were able to compute P,(5). In Fig.
2 we plot P, (5) versus 5 for 0 & 5 &~. It will be
noted that as 5 increases, P,(5) approaches an

asymptotic value of 3.7723. . . , whereas Pao's
approximate value is 3.5. For 5 approaching
zero, it appears that P, (5) also approaches zero;
however, we were unable to confirm this since
we did not obtain converged solutions to the Fred-

FIG. 2. Critical P,(c).

holm equations for 5 &O. Q]..
An apparent explanation for the unexpected tern-

perature behavior is that for large P evaporation
is so rapid that energy transfer by mass flow
must be counterbalanced by heat conduction in the
opposite direction, We hope that our results will
invite attempts to study this phenomenon experi-
mentally. The superheating and supercooling ef-
fects of the vapor phase adjacent to the conden-
sate should be readily observable.
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