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The period of the Peierls distortion in a one-dimensional system is assumed to be in-
commensurate with the lattice. The fluctuation conductivity just above the mean-field
transition temperature is calculated in the presence of electron-impurity scatterings.
In the clean limit for sufficiently strong electron-phonon interaction, the conductivity is
enhanced by fluctuations whose contribution is impurity limited and goes like (T —T p)
in the leading approximation. In the dirty limit, the conductivity is reduced by fluctua-
tions.

Recent experiments on quasi one-dimensional
conductors have excited much interest in the
properties of a one-dimensional electron-phonon
system which exhibits a Peierls instability. '
The conductivity behavior of such a system var-
ies drastically depending on its commensurabili-
ty. If the first reciprocal lattice vector G of the
undistorted lattice is commensurate with the
Fermi diameter q, (= 2hF), then the system be-
comes an insulator below the Peierls transition
temperature T p. The half-filled case (G =2q, ) is
a special example; its fluctuation conductivity
just above T p is insulatorlike, ' i.e. , the conduc-
tivity is depressed. On the other hand, if G is
incommensurate with qo, then the system pos-
sesses infinite conductivity at zero temperature. '
In this case, the fluctuation conductivity is found
to be positive and proportional to (T —Tp)

'" by
Allender, Bray, and Bardeen, ' by means of a
phenomenological theory. We report here the re-
sults of a microscopic ealeulation for the incom-
mensurate case.

Random impurities are included to provide fi-
nite conductivity in the normal phase, and have
two types of effects. The first is to introduce
the usual finite lifetime into the single-electron
states. The second is to cause a static distor-
tion of the lattice, an effect which is enhanced
by the Kohn singularity in one dimension. The
importance of this second effect depends on the
relative magnitude of the impurity potential and
the electron-phonon interaction.

Consider the extreme incommensurate case of
an ideal one-dimensional chain of uniformly
spaced atoms where the Fermi energy measured
from the bottom (or top) of the conduction ba.nd

is only a sma1. 1 fraction of the bandwidth. The

electron-phonon interaction in standard form is

where c and b are the electron and phonon opera-
tors and N is the number of atoms in the chain.
Electron-impurity interaction is included as
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FIG. l. Electron self-energy terms. Solid lines
denote electrons, wavy lines phonons, and dashed
lines impurity.

where p& denotes the impurity distribution over
the sites A&. For electrons near the Fermi level
in the undistorted chain, the important scatter-
ings are (1) in the forward direction, q-0, where
U, is taken as zero since it does not affect the
current, and (2) in the backward direction, q-q„
where U, =U, a constant.

The impurity scattering is treated in the Born
approximation. The self-energy correction of
Fig. 1(a) supplies the electron in the uniform
chain with a finite lifetime, v = UF jcU, where
vF is the Fermi speed and c is the impurity con-
centration. All other self-energy terms within
the Born approximation, such as shown in Fig.
1(b), vanish. We could include in the lifetime
the effects of the electron scattering by "ordi-
nary" phonons, with wave vectors away from
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the neighborhood of qo, i.e. , not belonging to
those soft phonons just above T p which consti-
tute the fluctuations.

The self-energy of a phonon with wave vector
q close to qo is calculated in the mean-field ap-
proximation, represented by Fig. 2(a). The
electron lines are understood to include self-
energy corrections due to impurity scatterings
such as shown in Fig. 2(b). Phonon energies,
temperature, and the reciprocal electron life-
time 1/r are all assumed to be much smaller
than hF, the Fermi energy. The extreme in-
commensurability is used in the sense that the
process of an electron excited by the q, phonon

(c)

F&G 2 Phonon self-energy terms

from the neighborhood of -kF to kF is included,
but not the process from the neighborhood of 0 F

to kF +@,which is smaller by a factor of max(~,
1/&, T)/SF. Then, the phonon Green's function
is given by

1/D (q, +p, i~~) =~i'- &&'1»(Tpo/T)+@(2) —2@(2+n[1—i~(l ~il+ vF p)])
—pe(~z+n[1 —i7(((u, l -v„p)])j, (3)

where ~ is the usual dimensionless electron-
phonon coupling constar t, Q is the unrenormal-
ized phonon frequency at qo, 4 is the digamma
function, n = 1/4mYT is the electron-hole pair-
breaking parameter, and T» is the transition
temperature in the absence of impurities.

From Eq. (3) it follows that the mean-field
transition temperature T p is given by

with

m&2 ——AQ (e+ $ p ),
6 = in(T /T p,) +4' (2 + n) -4' (2 ),
(' = -4 "(2 + n)v, '/32''T',

r =) n% (-.'+n)/4~T.

(6)

(7)

ln(Tpo/Tp) =4'(a +1/4nwTp) -4(2) .

Ordinary impurities serve to depress the transi-
tion temperature in the same manner as for the
excitonic insulator' and as magnetic impurities
do in superconductors, ' as has also been noted
by Schuster. '

For small to and P, the soft phonon is given by

1/D(@o+P, 'llOt) = (di +&dp +1 I &dt I ~

& is a measure of the temperature difference ~

= (T T p)/T p. For small t, E is proportions. l
to t.

We collect in Table I the limiting values of
these quantities in two cases: (1) the clean limit,
Tp»1/7; and (2) the dirty limit hF»1/7»TP,
provided that 7 does not drop below its critical
value v„=y /~T p„where T p vanishes.

We include only those impurity dressings in
the phonon self-energy which are consistent with
the self-energy diagram of Fig. 1(a). These are

TABLE I. Summary of expressions in the clean and dirty limits. Con-
ductivity is given in units of e /0 per unit cross-sectional area of a chain
with l=vFv and g=v&(3)/r.

Clean limit (cy «1) Dirty limit (a &&1)
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FIG. 3. Fluctuation contributions to conductivity.
The circle denotes the current vertex dressed by im-
puritie s.

either like those of Fig. 2(b) which contribute to
Eq. (3) or of Fig. 2(c) which are negligible. Cor-
rections such as in Fig. 2(d), which have not been
kept, have been found to be negligible in the clean
limit and to modify the dirty-limit results, though
not in an essential way.

As in our earlier work, ' we calculate the fluc-
tuation conductivity in leading powers of (e, /e)' ',
where e, is the Ginzburg critical value' (Table
I). Interpreted within the one-dimensional model,
the specific-heat measurements' at 55 K would

imply an order of magnitude &, -0.1, although the
transition there may actually be three-dimension-
a.l. In the dirty limit, since t, »1, there is no
region of interest in which the expansion in (e, /
e)' ' is valid. Nevertheless, it indicates the na. -
ture of the corrections to the normal-state con-
ductivity. The leading terms of fluctuation con-
ductivity in (e,/e)'" are given in Fig. 3. Again,
impurity dressing of the electron propagator is
understood. The current vertex contains the lad-
der sum of impurity lines. These terms are con-
sistent with the self-energy terms of Figs. 1(a),
1(c), and 1(d).

Figures 3(a) and 3(b) are analogous to the con-
ductivity due to the electron-phonon scattering.
However, the soft phonon now is a long-wave-
length fluctuation. It has the effect of creating a
fluctuating energy gap in the electron band, giv-
ing the electron self-energy

z(k, iE„)=a'/(iE„+h, +i/27+i V„c'"/(), (10)

where 8„ is the electron energy measured from
the Fermi level and the gap fluctuation is given
byl 0

b'=mu T/2ge'"

The net effect on the conductivity through the
processes in Figs. 3(a) and 3(b) is to make the
contribution insulatorlike as in the commensu-
rate case, giving

o~ ——-7/I
~ /$c

where

I, = [4 '(~ + n ) —~ n4' "
(2 + n) ]

'" l/2w

(12)

(13)

and l = v&7 is the scattering length.
Figure 3(c) is analogous to the ordinary pho-

non-drag term. In the half-filled case this term
vanishes, ' while in the extreme incommensurate
case it is finite. In the former case, the ground
state is doubly degenerate and the low-tempera-
ture phase is insulating. In the latter, the
ground state is continuously degenerate and a
metastable current-carrying state can be con-
structed. ' The phonon-drag contribution above
T p corresponds to the collective-mode contribu-
tion"'" below T p. Figure 3(c) contributes to the
conductivity'

with

f, ,' = A'/& '(z + n ), (15)

where A comes from the triangular vertex, giv-
en by

A =[+'(2+n) —n4'"(2'+n)J i/m.

Figures 3(d) and 3(e) correspond to an impurity-
induced lattice distortion which modifies the gap
fluctuation (11) to b, '(1+8+/&) and thus increases
0, in magnitude. Correction due to the sum of
terms such as in Fig. 1(e) is of the same order
of magnitude. The impurity phonon-drag term
of Fig. 3(f) is analogous to the pinning of the col-
lective mode below T p. It gives no contribution
to the dc conductivity above 7'.

p since there is no
phonon-drag current associated with a static im-
purity.

The total fluctuation conductivity is given by
the sum of Eqs. (12) and (14) with a, modified by
the factor (1+8n/&}. In Table I the limiting val-
ues are given. For sufficiently strong electron-
phonon interaction, the phonon-drag contribution
is larger and the fluctuation conductivity is posi-
tive. In all regions the conductivity is impurity
limited and proportional to t '". In the clean
limit the leading term in &' cancels. This can-
celation follows from the fact that the coeffi-
cients of the &' terms are proportional to the
corresponding diagrammatic contributions in the
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completely pure case where Peierls's theorem'
implies the infinite conductivity of the free-elec-
tron gas.

In the phenomenological theory of Allender,
Bray, and Bardeen, ' the electron is assumed to
relax quickly to the running lattice wave. In the
absence of impurity scattering, such relaxation
could arise from higher-order electron-phonon
scattering. '4 In the present calculation, the elec-
tron lifetime 7 may arise from both impurity
scattering and non-qo phonon scattering as dis-
cussed above. Our expression for the phonon-
drag conductivity a, has the same form as the
result of Ref. 4 if we identify their $o with the co-
herence length $ in the dirty limit.
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Thermal Quctuations of the type described by Langer and Ambegaokar and by McCum-
ber and Halperin have been observed in superconducting Chin-film rings cont;aining micro-
bridge sections. A peak in the Quctuation rate was found near the transition temperature.
The temperature dependence of the observed-:xates is in agreement with the McCumber-
Halperin Quctuation-rate equations and the deduced parameters are consistent with the
theory.

In the course of a series of experiments inves-
tigating the properties of superconducting quan-
turn interference devices operating at microwave
frequencies, current-induced steps have been ob-
served in the effective impedance of the tin mi-
crobridge sections of our samples which are very
similar to the voltage steps found in the de-cur-
rent-driven transition to the normal state of one-
dimensional tin microbridges and whiskers. '

These steps appear to be caused by the genera-
tion of localized centeis of Ohmic dissipation in
the microbridge sections of our samples. The
properties of these steps and their relation to
the dc-current observations will be discussed in
another publication. Data are presented on ther-
mal-fluctuation effects associated with the pro-
duction of these steps in a temperature region
just below the transition temperature of our films.


