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The magnetic anisotropy of the B phase (assumed to be a Balian-Werthamer phase) is
investigated within the Landau-Ginzburg theory, The anisotropy is determined by the
action of the dipolar energy and the magnetic field on a single vector A and it is shown
that walls will induce variations in A on a scale of Rc~ 0.1 cm. In the presence of a field
H this characteristic length becomes R-Hyz/H, where Hy is of the order of 100 Oe.

The discovery! of the new superfluid phases of
He® has generated considerable excitement be-
cause of the anisotropic nature of the states in-
volved. These phases are undoubtedly BCS-type
states made up of Cooper pairs with the orbital
and spin angular momenta equal to 1.> The A
phase has attracted most attention because in it
each pair has m ;=1 along some axis Tand m =0
along some other axis k.°"® These axes, along
with the phase and magnitude of the order param-
eter, characterize the state of the A phase. It
has been shown that T acts as an anisotropy axis
for propagation of the various types of sound
waves? and superfluid flow.3'®> It has also been
shown® that T will be oriented perpendicular to
the surface of any walls so that the A phase should
exhibit textures, that is, gradual variations of i
which are determined by the shape of the sample,
the applied fields, and any imposed currents. In
this sense this phase is similar to a liquid crys-
tal. In the same context little attention has been ]

dy; = (A/V3)[645 cOSO +nyny(1 = COSO) + €,y 7, SInG).
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paid to the B phase because it is generally be-
lieved to be isotropic. Although in many respects
this statement is true it is not so for the magnet-
ic properties of the B phase,”*® and we shall show
that there are a number of theoretical reasons
which make the B phase attractive from the point
of view of studying textures and singularities of
the order parameter with nuclear magnetic reso-
nance techniques.

The B phase is believed to be the Balian-Wert-
hamer state® in which each pair has J =T.+3 =0,
but with the spin variables rotated (arbitrarily)
relative to the orbital variables. The state is
therefore specified by a rotation matrix which we
write in terms of the axis of rotation n and the
angle of rotation 6. Thus introducting the nota-
tion used previously'® to specify the order param-
eter, namely that
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Here |A| is the isotropic gap. For an infinite
system the value of the angle 0 is determined by
minimizing the dipolar energy’ and it has been
found to be 6 =cos (- 3). We will find that even
in the presence of surfaces this angle remains
essentially unchanged. The dipolar energy does
not orient 1 but in the presence of a magnetic
field T tends to orient itself along the field be-
cause of a combination of the depairing effect of
the field and the dipolar energy.”*® For a finite
system the fact that the surface acts to depair
the m; =0 component along its normal must be
taken into account. To do this we introduce a
trial form for d,;(¥) which incorporates this
boundary condition:

dai(f) = (A/‘[3_) [éocﬁ_f('r.l.)sa SB]Rﬂt(—f')- (3)
The R,;(T) is the rotation matrix specified by n(f)
and 6§, § is a vector normal to the surface, and
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The last term in (4) is a surface term but is
generally nonzero. There are other terms in-
volving f but these can be shown to be small or
independent of i. We have set 6 =cos (- 3).
Equation (4) along with the orientation energy in
an external field constitute the bulk energies that
depend on n. This orientation energy is

FgB=- af d% (H- n)?,

c

(5)

(6)

where a is given in terms of the dipole energy Ej
and the gyromagnetic factor y,%'® a~h%?E,/[T (T,
- T)). Using (3) we find two different surface en-
ergies. The first comes from inserting (3) into
the dipolar energy® and is of the form

FpS==b [ (377 - 435, 0

where b~ £E;, that is, the coherence length times
the bulk dipole energy. This term tends to align
N perpendicular to the surface. The second con-
tribution arises because near the surface the or-
der parameter is not symmetric and consequent-
ly the susceptibility is no longer isotropic.'?

This induces a field-dependent surface energy of
the form

Fy=—df a®r(E R 02, (8)

f(r,) is assumed to be nonzero only when the per-
pendicular distance from the surface 7, is of the
order of the coherence length £(T) (~2004). With
f(0) =1 this function satisfies the boundary condi-
tions imposed by the depairing of the m;, =0 com-
ponent of the triplet. There are actually addition-
al depairing effects® due to the undoubtedly non-
specular nature of reflection from the walls and
due to the curvature of the walls. These will tend
to reduce the tangential components of the order
parameter but should not change the dominant
anisotropies at the surface induced by the strong
depairing of the component normal to the surface.
We ensure that there are no spin currents flow-
ing into the surface by imposing the additional
boundary condition that (8- V)i =0. By using Eq.
(3) and the general expression for the gradient
terms in the Landau-Ginzburg theory of these
phases®:!! we can calculate the energy required
to bend 1 as a function of position. It is found

to be

(4)

where R is the rotation matrix in (3) and d is of
order £(xy—Xg), i.e., the coherence length times
the difference in susceptibility between the nor-
mal state and the Balian-Werthamer state. This
term is minimized if R is such as to rotate H in-
to+5. If 6 is greater than the angle between §
and H a direction for fi can always be found such
as to minimize F,5. Since the equilibrium value
of 9 is >90° one can always minimize this term
by varying the direction of I. Also, since the
surface dipolar term cannot compete with the
bulk dipole energy, 6 does not vary appreciably
near the walls, so that we are allowed to concen-
trate on the variation of n. Inserting the expres-
sion for R in terms of i we find for § LH

F,f =22 [ a2 (5 R F) + ()0 §xH)P. (9)

Combining these results we find that the textures
of 1 for various shaped samples are character-
ized by two fields Hg and Hy and a characteristic
length R,

R.,=¢/b=01(1-T/T)"? cm,
Hg=(b/d)'2,
Hy=(b*/ac)*’.
Both Hg and Hy are of order 10-100 G and are
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relatively temperature independent. That the
length R _ goes to zero is a reflection of the soft-
ness of the bending energy as 7—-T,. Very near
T. the surface terms become small and the bulk
anisotropy dominates so that  becomes every-
where parallel to H. This fact may help explain
the recent experiments of Webb, Kleinberg, and
Wheatley!® and Ahonen, Haikala, and Krusius.!*

The most relevanL situation to study is a cylin-
drical sample with H parallel to the sample axis.
In zero field there are two competing textures
(see Fig. 1), one in which 1 points along the cyl-
inder axis and simply flares out as a function of
the distance from the center (texture I) and the
other where 1 lies in the plane perpendicular to
the cylinder axis and exhibits an in-plane struc-
ture in which there are two disgyration lines on
opposite sides of the cylinder (texture II). In Fig.
1 we have drawn these textures as they appear at
zero field. A disgyration here is defined in a
fashion similar to that used by de Gennes for the
A phase, that is, a line about which n rotates al-
ways pointing in a tangential direction. We find
that the in-plane structure is stable for the radi-
us of the cylinder R <74R,. As R decreases the
disgyrations are gradually excluded and the tex-
ture becomes uniform with fi along an arbitrary
direction in the plane. In an external field the
texture I is more favored, and one finds that if
one starts with texture II there is a first-order
transition at a critical field to texture I.

Turning now to the question of NMR line shapes,
since 6 is fixed the NMR resonance frequency
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FIG. 1. A plot of the high-field NMR line shape for a
cylindrical sample. The two textures that we have con-
sidered are illustrated in the upper part of the figure.
The first is a side view of the cylinder and the arrows
represent the direction of i. To illustrate the second
texture we take a view along the axis of the cylinder
and the lines represent tangents to the vector field.
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only depends on the angle between h and the ex-
ternal field. At large fields (yH> Q) the trans-
verse resonance frequency w, is’

w2 =(yH)? +Q % sin*(T), (10)

where y is the angle between T and H and Q, is
the longitudinal resonance frequency.

The shift in frequency gives rise to a line shape
P(w), which we calculate assuming that each re-
gion of the sample resonates at its local frequen-
cy w,. Itis

P(w)=V'1fd376[w-wt(F)], (11)

where V is the cylinder volume.

In texture I where 1 has a component along H
we may find P(w) corresponding to the case in
which R > R_Hy/H, since the variation of 1 is
then described by

x(f) =A sinh(rH/R, Hp), (12)

where v measures the distance from the cylinder
axis. A is a constant given by A =A,/sinh(RH/

R Hg), where A, is the angle between h and the
magnetic field at the cylinder surface. Since
over most of the sample 1 is nearly parallel to
H, we may approximate siny by its argument.
We get

P(w) =2(H,R ./HR)*(1/T)f (2[(w — yH) /T ]),

w =yH, (13)

where the characteristic width is I'=(Q,2/yH)A?
and

Flx) =1In[x'2 + (x + 1)22] /(x +x2)172, (14)

This function is exhibited in Fig. 1 in which P(w)
is plotted versus frequency.

Experimentally'® what is observed is not the
ideal line shape P(w), but an average of it corre-
sponding to the variation in magnetic field strength
over the sample caused by the presence of a fin-
ite field gradient. Consider such an average for
the transverse line shape:

YH+ Aw
N(Aw) = v P(w)dw (15)
~ _HBRC QL2 2)
1k 1n(2AwYHA0 , (16)

which is valid when N is close to unity. The main
dependence on magnetic field comes from the fac-
tor AzR./HR, since the logarithm is slowly vary-
ing. The average represents the amount of un-
shifted signal which is observed,'® as a function
of magnetic field. If we plot the maximum ab-
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FIG. 2. The maximum absorption data of Ref. 13
plotted versus 1/H. The slope gives an estimate of
HgRc~10—-20 cm Oe. The curves from top to bottom
are increasing pressures (decreasing temperature)
relative to the A transition; from the top down the pres-
sures relative to A are 21.0, 23.5, 27.1, 30.7, 34.3,
38.0, 41.6, and 45.2 mbar, respectively.

sorption data of Ref. 13 versus the inverse mag-
netic field (Fig. 2), this dependence on 1/H shows
up very clearly. Because of the uncertainty in
the estimates of Hy; and R, as well as Aw, a di-
rect numerical comparison between the mea-
sured and calculated slopes cannot be made. We
wish to point out, though, that the experimentally
determined slope of the curves in Fig. 2 is re-
produced for reasonable values of the parame-
ters, namely, R _Hy;~10 to 20 cm Oe, assuming
the logarithm to be about 2 to 4.

It should also be mentioned that these results
only depend on n not being along H at the surface
and consequently are not dependent on the de-
tailed knowledge of surface energies.

In conclusion, we emphasize that there are
several reasons that NMR studies of textures
may be very rewarding in the B phase.

(1) There is only a single vector involved, 1,
and the local resonance frequency is determined

by its angle relative to the external field. In the
A phase the directions of both k and Tplay a role
in determining the resonance frequency.

(2) The lengths in the B phase are longer, R,
=[(Fy—-Fg)/Epl£=10% ~0.1 cm, so that textures
should be easily observable and, indeed, are
clearly evident in the data in Fig. 2. In other un-
published NMR data rather sharp dips occurred
which may be due to a point singularity in the or-
der parameter. These will be discussed else-
where.
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