
Voz.vME 33, NvMBER 10 PHYSICAL REVIEW LETTERS 2 SEPTEMBER 1974

in agreement with the bulk interlayer spacing of
2.025 A to within our estimated accuracy of + 0.05
A. In addition it compares with the conclusions
of extensive multiple-scattering calculations. "

Further details of our method and applications
to experimental data are given in forthcoming
publications. "
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An exact solution to the one-dimensional electron gas with a particular attractive-in-
teraction strength for scattering across the Fermi "surface" is given. It is shown that
conductivity enhancement occurs for physically interesting values of the coupling con-
stants. Scaling arguments are advanced to demonstrate that this solution applies gener-
ally for attractive backward scattering. In addition, the spinless problem is solved ex-
actly for arbitrary couplings.

Progress towards an understanding of the equi-
librium and transport properties of quasi-one-di-
mensional conductors has been hampered by a
lack of knowledge about the underlying interacting
electron system. Although the Tomonaga and Lut-
tinger models' have provided some insight, their
generality can be questioned as a result of their
neglect. of interactions near twice the Fermi mo-
mentum, 2kF, which are responsible for back-
ward scattering. This note reports an exact solu-
tion to the more general problem with an attrac-
tive interaction at 2kF, and uses it to construct a
qualitative picture for the general interacting
one -dimensional system.

Several properties of the exact solution are par-
ticularly significant. It requires an attractive in-
teraction at 2kF of a specific strength but the
small-momentum interaction can be arbitrary, a
situation of sufficient generality to be of interest
for experiments on the quasi-one-dimensional
systems. Depending upon the sign and magnitude
of the small-momentum part, a large conductivi-
ty enhancement can occur as the temperature
tends to zero, in contrast to a recent approximate
treatment. ' We compute the temperature depen-
dence of the conductivity as well as other physi-
cally important response functions which describe
the low-temperature pairing, charge and spin
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fluctuations, and magnetic susceptibility.
Together with the renormalization-group calcu-

lations of Menyhird and Solyom, our solution can
be used to provide a complete, if qualitative, pic-
ture of the one-dimensional interacting gas. This
approach is analogous to the scaling argument of
Anderson, Yuval, and Hamann for the Kondo

problem. 4

The model we solve is a logical extension of
the Luttinger or Tomonaga model to include spin
as well as interactions which scatter particles
from +k F to -kF. The Hamiltonian is the sum of
free-particle kinetic energy, linearized near k F,

I
plus the usual small-momentum interaction, '

SC, = ~ „Qk(a„,'a„b„-'5„,)+ 2L 'QVp, (k)p, ( k),-
k~S

where the operators a„(b„,) describe spin- —,
' fermions with momentum k (-k); p, (k) and p, (k) are den-

sity operators, p, (k) = 2 "'Q~, a~+„~a~, and p, (k) = 2 '"
Q~, b~„,~b~, . It is helpful in our subsequent

discussion to introduce the spin-density operators v, (k) =2 '"Q~, sa~, &,~a~, and v, (k) = 2 '"Q~, sb~, „,~b~,
with s =+ 1. The operators p and o satisfy the algebra of the I uttinger model, [p,(-k), p, (+k')] = [p, (+k),
p, (-k')] = 5», kL/2~, together with identical equations for the v commutators, [v,(-k), v, (+k')] = [v~(+k),
v, (-k')]= 5». kL/2~, while all others vanish. The length of the sample is L and all states below v„kF
are filled. The kinetic energy term in Eq. (1) can be written in terms of these operators, by making
use of well-known identities extended to the spin-& case:

Qk(a„,~,—b, b, ) -2 L Q[ p (k)p, (-k) + v, (k)v, (-k)+ p, (- k)p, (k)+ v, (-k)v, (k)],
k, s

indicating a separation into density and spin-density operators.
The large-momentum-transfer terms are described by an additional Xi in the form'

X, = Q fdx C „'(x)e„,'(x)e„,(x)e„(x)[U„&„.+ U, u, , ],
SiS

where 41, (x) = I, ' 2+„exp(ikx)a„, and 4'2, (x) = L ' 2+„exp(ikx)b„, The Ui.i term can be written in
terms of the density and spin-density operators by a permutation of the inner two operators, and be-
comes equal to

—U L 'Q„p, (k)p, (-k) —U L 'g„v(k) v(-k).

The U~ term contains field operators of opposite spin, for which we use the boson representation'~:

%, , (x) = (2wa) '"exp(+ [ik„x+2nL 'Qk 'exp(--, alki —ikx)p, , (k)]j, (3)

where v Fa ' is the bandwidth, p, , (k) =+~a~„,a~ „p,, (k) =+~ b~, „,b~ „and the plus (minus) sign goes
with j = 1 (j= 2). This relationship has been discussed in detail for the spinless case and the general-
ization here is trivial, although the notation is somewhat cumbersome. This permits us to write the
products of field operators in the Ui term as (27i a) 'exp(2 "'[y, (x)+ y, (x)]], with

pj(x) =2vL 'Q, k 'exp(2aiki —ikx)v, .(k).

The total Hamiltonian K,+X~ can now be written as the sum Xo+X„where
$C = 27igpL ig„[p|(k)pi(-k)+ p2(- k)pm(k)]+ L Q~ (2V- Uii)P, (k)pm(-k),

Xg = 2m&pL Zg [v'|(k)vi(- k)+ 02( k)v2(k')]-—L Zy Uiivg(k)v2( k)

+ U, (27i a) 'Jdx(exp(2 '"[p,(x)+ y, (x)])+H.c.j,
and a separation into density and spin-density operators has been achieved. Obviously [K„3C,] = 0. It
is interesting to note that the most general Hamiltonian for spinless fermions, v(k) = 0, including large-
momentum interactions is still of the Tomonaga-Luttinger form, for which the thermodynamics' and
correlation functionsv are known.

This separation into X, and K, is essential because X, is a quadratic form in boson operators and
may be diagonalized by means of a canonical transformation. We now show that for a particular value
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of U]i, X, may also be diagonalized, Since the part of X, which does not involve U, is quadratic it may
be diagonaiized by a transformation e'~X,e '~=X, ', with S=2mil. 'yv, (k)v, (-k), and tanh2y =- U[[

&&(2nvF) '. This transformation changes the velocity to vF'=vF sech2y and the exponent of the U~ term
to 2 '"e~[q&,(x)+y, (x)]. The point now is that if 2 "'e~= 1, comparison of Eqs. (3) and (6) shows that
the U, term is just the boson representation of a product of spinless Fermi fields C,~(x)4, (x) exp(-2i
xkFx). Writing the kinetic energy also in fermion representation, we find that X, ' is quadratic and
solvable:

X,'=vF'Q, k(n„a, —b, b, )+U~(2no. ) 'Q, (a„"b„2,

It is possible to make 2 "28~= 1 by choosing U][

so that tanh2+ = —U~~(2wvF) '= a. Equation (7)
has the eigenvalue spectrum v Fk F ~ [(k - k F)'
+&']'" and v„kF +[(k+kF)'+a']'", where b, = U~

x(2vn) ', indicating the appearance of gaps at
+kF and -kF. These gaps have important conse-
quences for the properties of our solution.

The total Hamiltonian K'=e' Ke ' =K,+X,' is
now diagonalized, and it is straightforward to
compute the free energy and correlation functions
in the usual fashion. %e may distinguish two re-
gions: low temperatures, T «4, for which the

gap at the Fermi energy means that only excita-
tions in'X, (and consequently density operators)
are important; and high temperatures, T»4,
when the gap, and consequently U~, are negligible.
(A similar division applies to the frequency and
momentum dependence. ) In either case, the Ham-
iltonian is of the Tomonaga form, and the analyt-
ic behavior of correlation functions is therefore
known from previous work. 7

The properties of our solution are best ex-
pressed by the exponents characterizing the dif-
ferent spectral functions. These exponents are
defined by ImC((u) ~ e", where C is the correla-
tion function in question. Because the analytic
form of these functions is of Tomonaga-Luttinger
form, the temperature and momentum dependence
is also determined by this exponent. The total
scale dimension of these correlation functions

+ H. c.).
F

i is given by p+2, the extra 2 resulting from two
Fourier transforms in the definition of C. The
exponents are listed in Table I, along with the
temperature dependence of the magnetic suscep-
tibility, for both low and high temperatures.

The electrical-conductivity relaxation rate in
the impurity-dominated region is determined by
the spectral function for the parallel-spin 2kF
susceptibility, ' the characteristic energy S' re-
sponsible for the interaction, and the free-parti-
cle conductivity O', . The result in Table I then
means that o=ne'7'/m=a, (T/W) ", which will be
enchanced (p, &0) whenever v'&-+. Under these
conditions, the spectral density at 2A F vanishes,
causing the reduction in scattering from the im-
purity.

It is interesting to compare with the renormal-
ization-group approach of Menyhard and Solyom.
They considered the special case Uii = U~=g, and,
for g, &0, their exponents are qualitativeIy dif-
ferent from ours because they find that g, scales
onto a fixed point (g, = - 2m F) which is outside
the weak-coupling region for which their pertur-
bation expansions are adequate. A more credible
use of the renormalization-group equations, anal-
ogous to scaling theories of the Kondo problem, 4

uses the fact that, provided no fixed point inter-
venes, the coupling constant would scale through
the value g, = -+mvF at which our exact solution

TABLE I, Exponents of the spectral functions, defined in text, and the low- and high-tem-

perature behavior of the magnetic susceptibility. The parameters g' = p(~F) '+ &~ and g
= U ~(2ge)

Spectral function
and operator

2kF susceptibility, 0& + 42, +

2AF susceptibility, 4 f + C2
Singlet pairing, 4

& +~42
Triplet pairing, 4

&
+~%& +~

Susceptibility, 0.~+ o.
~

Low-temperature
(T»g

exponent

—2+ [0—v')/(&+v')1'/'
—2+ [(~ -")/u+") ) '/'
—2+ [(&+v ')/(& —v')) '

—2+ [(1+v')/(1-v') j'/
(~~F )- '(2rPQ'~'e- 8

High-temperature
(T»+

exponent

—p+ f(l-v')/(1+v'))'
f(&- ')/(&+ ')l'~'

—p+ [(1+v')/(1-v')j'/'
[(1+v')/(&-v') j'/'

2 (mF) '(1 —U (( /2wuF)
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may be used. This suggests that the gap 4 exists
for the weaker-coupling problems, 0 & g, & -~mv F,
as well. If this gap exists, the low-temperature
exponents given in Table I are still correct, with
a new v'2mv F

= 2V —U~~. The high-temperature ex-
ponents are more complicated but can be com-
puted by setting Ug= Oq and following the usual
procedure for the Tomonaga-model correlation
functions. v

These exponents give substantial physical in-
sight into the behavior of the system. For exam-
ple, if the conductivity exponent is negative at
high temperatures and positive at low tempera-
tures a conductivity peak occurs at a temperature
of the order of the gap, where the two power laws
"cross over". The magnitude of this peak de-
pends on 8' and U~ as well as the difference 5p,
between the two exponents. For U~~ (wv „) '= —,,
there can be a rather small peak because 5p. is
only 2. We have calculated 6p. for smaller le(l,
assuming that the scaling arguments are correct,
and find that 6p approaches ~5 as l U~~l-0. This is
a new mechanism for a conductivity peak which
merits a more detailed discussion than can be
presented here.

Spin-flip impurity scattering will have a tem-
perature dependence given by the opposite-spin
2kF susceptibility. Here the difference in expo-
nents is large, indicating a stronger scattering
at low temperatures which would dominate other
mechanisms.

At the risk of making this problem appear more
complicated (but even more intriguing), we now

point out the reason behind our notation U~~ and
U~. These have been chosen to emphasize the
connection to the Kondo parameters —J~t and J,.
The Hamiltonian in Eq. (6) has many similarities
to the Tomonaga version of the Kondo Hamilto-
nian, and we expect many of the renormalization-
group arguments to be applicable here as well.
In particular, the weak-coupling scale energy for
R, is IUI"'exp(- lUi '), for U~~

= U, = U&0, as in

the Kondo problem.
The inclusion of electron-phonon coupling

raises many questions for which there are only
qualitative answers at present. In the adiabatic
model, which views these interactions as giving
rise to additional electron-electron coupling
constants, the question of resistivity or conduc-
tivity enhancement depends sensitively on the
relative signs and magnitudes of all coupling
constants. Furthermore, if the phonon frequen-
cies shift with temperature, these coupling con-
stants also vary, and the calculation of the ap-
propriate exponents becomes complicated. This
problem is currently under investigation.

Much of this work was carried out while A. L.
was a summer visitor at Brookhaven National
Laboratory. The model solved in this paper ap-
pears to be related to generalizations of the Thir-
ring model, "as pointed out to us by S. Coleman.
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