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We give an approximate renormalization-group formulation which parallels that of Wil-
son. The group generator represents the momentum-independent limit of the differen-
tial generator of Wegner and Houghton. The eigenfunctions near the Gaussian point are
computed for all spin dimensions n and lattice dimensions d, including d =2. The nontriv-
ial fixed-point Hamiltonian in dimensions near d = 28/(6 —1), together with the eigenval-
ues near that nontrivial fixed point, are found explicitly to first order in & —= 8(2- d) +d
for all va1ues of n a id the order 6. Odd-dominated Ising systems and corresponding ex-
pansions in e ~i2 are also treated.

The renormalization-group approach to the study of critical phenomena has had great initial suc-
cess. ' The renormalization group embodies in concrete mathematical form the scaling notions of
Kadanoffs and provides a framework for explicit calculation. These calculations have usually been
done by perturbative expansions, in analogy with similar problems in quantum field theory. All the
difficulties of field theory have been incorporated into critical-phenomena calculations as well; the cal-
culation of thermodynamic quantities involves complicated Feynman diagrams and divergent integrals.

Even in those cases where field-theoretic difficulties are not encountered, the perturbation tech-
niques have been "brute force" in nature. For example, the calculation of critical-point exponents for
higher-order critical points has been hampered by the rapid increase of the number of equations which
contribute. '

Many renormalization-group problems can be simplified by revising the perturbative techniques to
conform as closely as possible to the structure of the renormalization group itself. It was noted by
Wegner' that the eigenfunctions of wilson's approximate renormalization group (when linearized around
the Gaussian point ) are related to Laguerre polynomials. However, this observation has hitherto not
been fully exploited. Here we show that by utilizing the structure of the renormalization group, a num-
ber of problems Isee (i)—(iv) below] may be solved simply and explicitly.

To do this, we first write down an appropriate differential equation based upon the Wegner-Houghton
differential generator for the renormalization group. Their functional integrodifferential equations
may be simplified if we consider them in the limit of vanishing "external" momenta. ' We find that for
n-dimensional isotropically interacting spins s on a d-dimensional lattice, the renormalization action
on the reduced Hamiltonian II is given by

BH d ' 1 BH 1 BH 8 HH =dH+ (2 —d)x —+- 1 —— ln 1+—+—ln 1+—-+ 2x
~x 2 pl x n ~x ~x

where the dot denotes differentiation with respect to the renormalization parameter /, and x=- (s ~ s)/n. '
Since we have neglected the detailed momentum dependence in the renormalization group, we have set
g =0.

(i) The general toexPansion. To solve (1), the H—amiltonianH can be expanded in terms of any com-
plete set of functions; the expansion functions should be chosen to simplify the problem under consid-
eration. A particularly useful set of functions are the eigenfunctions of (1) when (1) is linearized about
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the Gaussian fixed point, H =0. These functions (not normalized) can be chosen to be

Q» (x) —= [d/(2 —d)n]» L»"" '([(d —2) /d] nx), (2)

where the conventions of Erdelyi' are used for the Laguerre polynomials, L»"" '(z). The eigenvalue
corresponding to Q» is /(» =P(2 —d)+d. To illustrate the use of the Q», we have calculated the non-
trivial fixed-point Hamiltonians, H =&6*, corresponding to critical points of order 6. The fixed points
of (1) are determined by setting H =0. In analogy with the e expansions introduced in Refs. 1 and 2,
we calculate Ho* as a perturbation expansion in e 6=-8(2 —d)+d, 'o for 8 = 2, 3, 4, . . . (the usual'2 e is e,
in our notation). To first order in ee, H~ =eqv@Q~, where ve is given by

I =-,'dv, (m(e, e)je).
Here the bilinear functional S(i,j ) is given by

22(i, j)= 1 —— ' '+— (1 —n) '+(2i+n —2)Q, , (1 —n) '+(2j+n —2)q, ,),1 dQ, dQ, 1 dQ; . dQ,
(3b)

and the inner product (f IP) for a function f (x) is defined by

f(x)= Z(flP&Q»(x).
P=0

(3c)

Equation (1) can now be linearized around He . The eigenfunctions will change slightly and so will
the eigenvalues. If we denote by 0, the eigenvalue of the new eigenfunction, which to zeroth order is
Q„wefind that to first order in e~

(n(e, I) I I)' ( ~(e, e) I e) '

The evaluation of the bilinear coefficients in (4) is merely a problem in classical analysis. In fact, us-
ing the full renormalization-group equations, we have shown that (4) is exactly correct'~ to order e 6.

For n=1 (Ising systems), (3b) simplifies considerably, the Q» are related to Hermite polynomials,
and (4) reduces to

j' (2f) t 8!
2r =(j(2 -d)+") -1nn(l((221)) (22 ij)1) . (5)

These results are in agreement with the 8 =2 calculations of Refs. 1 and 2, and the 6 =3, 4 calculations
of Ref. 5. We note that (5) also contains the odd eigenvalues for f = 2, 2, 2, . . . .

From (5) we immediately deduce several important consequences. (i) For eo&0, the correction to
the Gaussian eigenvalue is negative, so that the nontrivial fixed point always dominates the Gaussian
fixed point sufficiently near the critical point. (ii) The correction to the Gaussian eigenvalue vanishes
unless 2l~ 8. In particular, to order e(), X~=2 for all 81 2, independent of d. (iii) We note that A. e

so that if we examine the first 6 eigenvalues we find that at the Gaussian fixed point they
are all positive, and at the nontrivial fixed point all but the last remain positive. The Gaussian point
is unstable, and the nontrivial point is a generalized saddle point for e &0."

We also note that the ordering field which couples directly to s is entirely decoupled from the re-
mainder of the renormalization-group transformations. ' The eigenvalue A.„„corresponding to the
ordering field, is exactly 1+d/2.

(ii) Gaussian eigenfunctions for d=Z. —We next consider the behavior of (1) for d = 2. The nontrivial
fixed points at d =28/(8 —1) cluster densely around d = 2 as 8- ~. By studying (1) with d set equal to
2 [or by examining the limit of (2) as d —2 with P(2 —d) fixed] we find the eigenfunctions around the
Gaussian fixed point have a continuous set of eigenvalues, X ~ 2. A complete orthonormal set of eigen-
functions is given by'

Q (x) (1+)2/2x (22/2 1)/2J ((4 2y)1/2(~)l/2)

where J„&,, denotes the Bessel function of the first kind, and

f dxx"/' 'Q„(x)Q„(x)=5(/(. —A. '). (Gb)
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The Hamiltonian is expressible as an integral, H= fv~q„dk„rather than a sum (for dc2). In the dis-
crete case, thermodynamic potentials are generalized homogeneous functions" of the expansion coeffi-
cients. In the continuum limit, they become generalized homogeneous functionals with similar proper-
ties. For example, the Gibbs potential satisfies

edl G( ) G(e xl

The continuous nature of the eigenvalue spectrum leads, in general, to logarithmic factors multiplying
the usual power-law dependence of generalized homogeneous functions. ' Since the approximations
made in deriving (1) require setting zl = 0 for consistency, one must be cautious in interpreting our re-
sults for 4=2.

(iii) Pozvez'-law expansions. The —solution of (1) for other than ee expansions is more difficult. For
n arbitrary, the expansion of H in terms of I aguerre polynomials leads to equations coupled to all or-
ders in the expansion parameters. If these cannot be assumed small, the equations are too complicat-
ed for immediate solution. If, however, & is expanded in powers of x, the resulting equations, while
not appropriate for general &~ analysis, are essentially "triangular. " That is, if we expand

the generator for the v» equation is given by

d 8&~ 1 "v,„x'' 1 " (2j —l)v„.x' '
v ~=[p(2 —d)+d]v»+ ——

~

1 —— ln 1+ Q '."
t

+—ln 1+ Q2 ~X)
(8)

The linear structure has only one off-diagonal term, d(1+ 2p/n)v», 2/2, and the nonlinear terms are at
most of order P in the modified coupling constants v2,. =v»/(I +v, ). Furthermore, the nonlinear terms
include no v„with j&p. In particular, for n= —2m, the first m equations decouple entirely from the
remaining equations. "

We have used (8) to evaluate critical-point exponents for the ordinary and tricritical points (8 = 2, 3).
For 8 =2, our results agree with those of Refs. 1 and 2. For 8 =3 we find to order &~,

X, = 2, A., = 1+ [(6 —n)/(3n+ 22)]e,/2,

in agreement with the general formulas for n=1 given in (5).
(iv) Odd-dominated Ising systems. —In addition to the usual even fixed-point Hamiltonians described

above, (1) admits (for n=1) fixed points which have leading odd terms We m. ay do e p,&, expansions
for 8=2, 3, . . . in this case as well. The fixed-point Hamiltonian is of order (op „,)"'. We write the
fixed-point Hamiltonian H* as

H*=(ep»)' 'vphmp, + ~e, vz2fp+(ep, ~) ve fp+.
where h2 p, is an odd Hermite polynomial, and f, is an even and f p an odd function of s. Solving (1)
to first order in & , ~„wefind the fixed-point value v & and the perturbed eigenvalues to be given by

1 = ——', dv '(8(28 —1,26 —1))28 —1),
(& (28 —1,1)I l )' "'(s(26 —1,26 —1)~26 —1) '

The operator 8 in (11) is

S(m, l) —= 64l(l —1)m(m —1)[(h 2)2h, 2+h, 2g (h„,)~+2h 2g, (h, , h 2)],

(11a)

(lib)

(12)

where 2, is defined by C, h~=[P(P —I)/P —l]h~, for all Hermite polynomials h~. At least for 28 —1
=3, 5, we have vz &0; the Hamiltonian is real only if &, &, &0. For ~&,&2&0 the odd parts of the
fixed-point Hamiltonian are purely imaginary. "

The Wegner-Houghton approximate renormalization group proposed here provides a straightforward
framework in which to explore the consequences of the full renormalization group. As a differential
representation, it is suited to investigations of nonlinear phenomena such as crossover competition
between two or more fixed points. Elsewhere" we have solved (8) near d=4 for the nonlinear cross-
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over between critical and Gaussian (mean-field) behavior. The extension to crossover from tricritical
to mean-field behavior seems to be more difficult.
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+Work supported by the National Science Foundation, the U.S. Office of Naval Research, and the U.S. Air Force
Office of Scientific Research. Work forms a portion of the Ph. D. thesis of J.F.N. to be submitted to the Massachu-
setts Institute of Technology Physics Department.

~K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240 (1972) .
K. Q. Wilson and J. Kogut, to be published; for an elementary discussion, see H. E. Stanley, T. S. Chang,

F. Harbus, and L. L. Liu, in Loca/ PxoPe&ies at Phase Transitions, Proceedings of the Intengational School of
Physics "Enrico 5'enni, " Course LVIII, edited by K. A. MOller (Academic, London, 1974), Chap. 1.

~L. P. Kadanoff, Physics (Long Is. City, N.Y.) 2, 263 (1966).
A critical point of order 8 can be defined as a point at which 8 phases are simultaneously critical. See T. S.

Chang, Q. F. Tuthill, and H. E. Stanley, Phys. Bev. 8 9, 4882 (1974), and references contained therein.
5Chang, Tuthill, and Stanley, Ref. 4; M. J. Stephen and J, L. McCauley, Jr., Phys. Lett. 44A, 89 (1978); E. K.

Riedel and F. J. Wegner, Phys. Rev. Lett. 29, M9 (1972).
6F. J.Wegner, Phys. Rev. 8 6, 1891 (1972).
~F. J.Wegner and A. Houghton, Phys. Bev. A 8, 401 (1978).
In the special case n=~, Ref. 7 gives a derivation of a solution for (1). The zero-momentum requirement can

be weakened somewhat in this case. If we write v& -(k~, . . ., k~.) for the momentum-dependent 2j-spin coupling con-~ ~ ~ ) j
stant, Eq. (1) follows by restricting the k& to cancel in pairs; that is, we consider only v&,.(k&, —k&, . . ., k&, -k&) .
We also note that the reduced Hamiltonian density H& of Wilson (Ref. 2) has the form H& = JVs) +H(x). The gradi-
ent term is left unchanged by the renormalization group in the approximation employed here and is therefore not
considered explicitly.

A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 2, pp. 188 ff.
Our definition of &6 differs slightly from that of Chang, Tuthill, and Stanley, Ref. 4. The convention adopted

here has the advantage that the eigenvalue of Q8 is precisely e.
To see this, it is sufficient to note that the Q. are eigenfunctions of the full linear renormalization-group opera-

tor. The powers of x in the Q& are replaced by more complicated sums over momentum: (nx)) becomes

p. . . ~ ~
i 1 f P & 'i 1 P P

~ ~ ~ ~~ ~ ~ Sl ~ Sl t ~ - ~ SA
~

Sgp l +k +. . .l +l .)0
~i~i ' ' '~p~p

With these emendations, an examination of the full nonlinear renormalization-group equation of Ref. 7 shows that
the fixed point and eigenvalues are correct to first order in q, and q is o(e~ ).

Points (ii) and (iii) hold for generaln; (i) cannot hold for o) bitra)y n (e.g. , for S =2, Xi=2 —[(n+2)/(n+8)]e2).
J.Hubbard, Phys. Lett. 40A, 111 (1972).
G. N. Watson, Theory of Bessel Punctions (Cambridge Univ. Press, Cambridge, England, 1966). Note that the

formal completeness of the eigenfunctions Q~ is only guaranteed for n» 1. Results for n» 1 must be obtained by
analytic continuation of those for larger n. See also Watson, oP. cit. pp. 458 ff.

A. Hankey and H. E. Stanley, Phys. Rev. 8 6, 8515 (1972).
6M. E. Fisher, Phys. Rev. Lett. 30, 679 (1978).
After the completion of this manuscript, we were informed that M. J. Stephen has obtained similar results for

an e3/2 —2 —d/2 expansion.
8J. F. Nicoll, T. S. Chang, and H. E. Stanley, Phys. Bev. Lett. 82, 1446 (1974).


