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If a band is narrow and is not nearly empty nor nearly full, the Hubbard lattice is
shown to be an insu1ator. The lattice containing about one electron per atom will be a
Hubbard-type insulator with a wide energy gap but if the number of electrons decreases
or increases beyond a certain range, the gap is suddenly reduced, yielding a small-gap
insulator of a completely new type.

Hubbard' has shown that, in the presence of a
strong intra-atomic repulsive interaction I, a
narrow conduction band splits into two and that,
if the lower band is filled and the upper band

empty, the lattice is an insulator. Although the
Hubbard treatment is regarded as one of the
most promising approaches for d electrons in
transition metals, many puzzling questions on
the nature of the Hubbard solution are unan-
swered.

If the lower (or upper) band is partly filled,
the lattice is metallic. According to Herring, '
however, the ratio between the Fermi-surface
volume and the number of electrons deviates
from the value predicted for weakly interacting
electrons as much as by a factor of 2 when the
number of electrons N is nearly equal to the
number of atoms N, in the lattice. This is con-
tradictory to Luttinger's theorem' that the Fermi-
surface volume is unchanged by electron interac-
tion to all orders of perturbation. The Hubbard
insulating state appears only when the ratio X/X,
is exactly equal to a certain number, say r~.

Since n can be less or greater than 1, the lattice
with one electron per atom may not be an insula-
tor. As the density of electrons per volume in-
creases, the energy gap disappears, yielding a
metallic state with two overlapping bands. How-
ever this state again maintains the abnormal be-
havior of the Fermi-surface volume.

In this Letter, we shall show that the Hubbard
lattice, having excess charges properly compen-
sated, remains insulating unless the original con-
duction band is nearly empty or nearly full. The
lattice with nearly one electron per atom will be
in the Hubbard insulating state with a large ener-
gy gap, &I, even if a fractional number of elec-
trons per atom are added to (or removed from)
the lattice. If the Hubbard lower (or upper) band
is partly filled, the lattice is in a coherent (lo-
calized) state and a small, but finite, energy &,
(&, «z) is required to remove an electron, mak-

ing the lattice a small-gap semiconductor. This
is in line with Mott's insulating state, ' and the
Hubbard metallic states with the improper be-
havior of the Fermi-surface volume may never
exist.

To find the Hubbard insulating state, it is es-
sential to include explicitly the strong interac-
tion I which appears whenever two electrons with
opposite spins (T and 0 meet at the same atomic
site. Hubbard has calculated it by using the
Green's functions of the type ((C~,(t)N~-, (t);
C~, (t'))), where C~, and CR, are destruction
and creation operators of an electron 0 at site
A and N„„=C~, C& . As simultaneous motion
of other electrons is included by calculating
higher order terms such as Hubbard's electron-
scattering and resonance-broadening correla-
tions, there appear posibilities that the same
electron o returns to the same site after various
collisions. If it is essential to calculate the in-
teraction explicitly at the first time an electron
& appears at a site B, it is equally important to
include it every time the same electron & comes
back to A. ' Even in the most advanced Hubbard
treatment, the successive interactions are ne-
glected because of decoupling approximations
used. To include the successive interaction, the
higher-order Green's functions have to be treated
on the same basis as the single-particle Green's
function G.

As has been discussed previously, ' the higher-
order Green's function ean be reduced to func-
tional derivatives of the one-particle Green's
function G in the presence of a small external
field. If the simple Green's function G' obtained
by Hubbard is used in calculating the derivatives
and hence the self-energy correction to G', the
seemingly difficult task of handling the higher-
order Green's functions on the same basis as
G may be carried out satisfactorily, and the
result obtained will retain the Hubbard interac-
tion explicitly up to infinite order in hoppings.



VOLUME 33, NUMBER 8 PHYSICAL REVIEW LETTERS 19 AUGUsT 1974

The resulting Green's function is

with the upper and lower signs for the electron
and hole Green's functions, respectively, and

g(kv) = lim i G„~,(T) Q—e, n„- +n —,(1 —n,—)e,
1

T=p~ a q

1+,PQ e„,,„,n„-,n„-„,
a qi q2

where ~, and co, are the Hubbard simplest solu-
tions for the lower and upper bands, respectively,
&, or &, is the Fourier transform of the hopping
matrix elements e»., n„=(C„C„),and n,
=(N&,). The origin of energy is chosen at the
mean of e, so that+„e„=0. The most important
aspect of the above result is that the self-energy
correction represented by g(ko') contains the
Green's function G», (w) =((CN, (w)CN, (0))). If
the electron Green's function G,i is being calcu-
lated, v should rema, in positive and iG», (T =0 )
=1-~„while for the hole Green's function
G»„, iG», (7'=0 )=-n, . Hence poles ~; +' of
C,&

will be different from the corresponding
poles -w; ' of t"q, i„yielding the distinct en-
ergy spectra, $;

"for an electron and -(;" '
for a hole, where

and p, (N) is the chemical potential.
The solutions ~ =-+~; "of the cubic equation

6 ' = 0 may be estimated by the intersections of
two curves h(ka, co) = (&u —~,)(~ —&o, ) [&u —(1
-n;)Ij and I'g(ko') = const as is shown in Fig. 1.
In the narrow-band limit, g(ko') is small and the

h, g

h((u)

g
N-I

g
N+I

solutions w and v, ' are not different from the
Hubbard results &, and ~,. Even if the band-
width 2D increases, the inequality ~, & (1 -n-, )I
(cu, remains valid and the shape of the A curve
will not change drastically. If 2D exceeds a
certain limit, say M, however, two of the three
intersections disappear, being replaced by two
complex solutions, where ~ is of the order 0.27
for an electron added to the lattice with a nearly
half-filled lower band (N =N, /2).

Let us consider the case where the lower band
is partly filled (N & N, ). Since, in the narrow-
band limit, n, —is -y for occupied states and zero
otherwise, the gap parameter d—=N, 'P, c,n, —in-
volved in g(ko') will be of the order (N/2N, )e,„,
where &„is the density average of e, for occu-
pied states. Since the origin of energy is chosen
at the center of &&, d will be negative and of the
order 1/N, for a nearly empty lower band, of the
order D/2m for a half-filled lower band, and a
small but finite negative value for a nearly filled
lower band.

Let g "(ko) and g" '(ko') be the values of g in-
volved in 6,&

and Gt, p]gp respectively. Because
of iG+N, (7) involved, the first term on the right-
hand side of Eq. (2) is negative for g "(ka) and
positive for g" '(ko'), yielding that g" '(k&)
-g""(ko') =

i d i
= (N/2N, ) i& „i)0. Hence, -(d,

=(-$, ')- $,""=I'idi/(&h/5~), , becomes
of the order 1/N, for a nearly empty lattice, and
of the order (4/3)i di = (2/3m)D for a nearly half-
filled lower band. The spectral weight function
of the lower band for an electron,

A,""(ko)= [(u,""+(1-n-, )1]'((u,""—(u,"") '

x(~ N+1 & N+1) 1

is also smaller than the corresponding spectral
weight function for a hole, A," '(kv), since
(5h/6e), is negative and its value is less
than (5h/5~)„„, by the factor 1-n , . The dif-—
ference 5A,"—=A.," ' -A, +' is of the order (40/9)
x(d/I ) for a nearly half-filled lower band.

The foregoing calculation has profound conse-
quences. The N-electron lattice in the ground
state may be constructe~~ by adding electrons
one by one and the chemical potential p, (N)
=&a,"+'(kFO) and the Fermi momentum kF are
determined by G, & by the relation

1 OO

2N, N= ——li—m p f d&o ImG„(ko', &u)
p+ k, o

FIG. 1. Plot of two curves h{~0,) and g{~) =const.
The intersections give the solutions of G ~ =0. A,"+'(ko)[1 —f (&u)], (4)
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or

A, ,""(ko)f ((u), (4')
J ~ 2F

where f(~) = 1/( exp[(~ —)J. )/k„T I
—1j. The excita-

tion spectrum of an electron added to the lattice
is calculated by G,&

and the ground-state energy
is given by fo )J.(N)d¹ However, the energy
spectrum of an electron remove J. fmm the lattice
has to be computed by G&„~,. SinceA, '(ko)
&A~ +'(ko), the right-hand side of Eq. (4') be-
comes greater than N if A. , +' is replaced by

A. y" ' . The refor e the hole state 0 1Ti
„'with the

maximum energy $
" ' cannot be k„but k

&kF and it should be calculated by

This is possible because, after losing ari elec-
tron, the lattice of N —I electrons is no longer
in the ground state but in the excited state with
a hole ink „'.The energy —$, '(ko) of a re-
moved electron calculated by Gh, ~, is then high-
er by the amount &$, than the corresponding en-
ergy $,""(ko) obtained by G,~, suggesting that
an activation energy 4, (N) = &(, supplied exter-
nally is needed to remove the electron. '

In conclusion, the ground state of the Hubbard
lattice is a coherent (localized) state with a for-
bidden band k~„" '-kF between the occupied
and unoccupied spectra; the activation energy
&, (N) and the momentum k~ -k,„" ' are needed
to excite an electron into an unoccupied state,
making the lattice an insulator with a small indi-
rect gap &, (N). The temperature dependence of
the conductivity will be proportional to exp(-b, /
2ksT) of the carrier concentration.

Even if the number of electrons increases, the
lattice mill remain insulating. When the lamer
band is nea, rly half-filled the gap &, (N) will at-
tain its maximum value of (2/3m)D (which may be
-0.3 eV if the original bandwidth 2D is of the or-
der 3 eV) and then decrease gradually. Even if
the lower band for electrons is filled with N' elec-
trons, the "hole" band will be terminated at the
state k„„, ' and the small gap parameter d for
Gh„&, will remain negative and finite. Conse-
quently, the energy required to remove an elec-
tron from the lattice is equal to the activation
energy b, (N) but the lowest energy level into
which the electron can be excited is in the upper
band with energy (, +'(koo), thus suddenly in-
creasing the activation energy to a large value

+'=&l. This energy gap is the same

Bs the gap involved in the Hubbard result in mag-
nitude as well as in physical origin. Even if
more electrons are added to the lattice, how-
ever, the lattice remains a Hubbard insulator.
Only after ~' electrons are added and the lower
"hole" band is extended to the zone boundary
does the lattice return to the small-gap semicon-
ductor. By this time, hN' states in the lower
part of the upper band for electrons are filled,
yielding a finite negative value for the gap pa-
rameter d involved in G,~, and the arguments
for the small-gap semiconductor developed for
the lower band will be applied to this case. Only
if the lattice is nearly empty or full does the gap
parameter d vanish as 1/N, and the lattice become
metallic with the conventional Fermi surface.

As the bandwidth 2D increases, the gap parame-
ter d increases, stabilizing the small-gap insulat-
ing state. If 2D becomes much greater than AI,
however, energies in the upper half of the lower
band and in the lower half of the upper band be-
come complex, introducing finite widths in the
spectra and, at the same time, reducing their
spectral weights. Then the above tendency is re-
versed and eventually the lattice will become a
normal metal with a single band, but a more pre-
cise calculation is needed to discuss the metal-
nonmetal transition.

So far we have neglected explicit consequences
of the third solution ~, ' since, in the narrow-
band region, its spectral weight is of the order
(d/I)' and smaller than the quantities M and &(
of the order d/I needed in obtaining the foregoing
conclusion. If the bandwidth increases, this is
no longer the case. We have calculated the in-
verse Green's function correctly up to terms lin-
ear in &, by extending the perturbation up to an in-
finite order and found that the effect of ~, ' can be
included properly and that the present conclusions
remain correct.

*Based on work performed under the auspices of the
U. S. Atomic Energy Commission.
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TIf N =1, the energy of an electron added to the lattice
is &~-& with»0, because of the attractive interac-
tion between two electrons involved, but the energy of
an electron removed from the lattice with N =1 is &&

since only a single electron is present. This illustrates

that the difference & is the activation energy needed to
break up the bound pair. This two-electron N-site
problem was originally solved exactly by J. C. Slater,
H. Statz, and G. F. Koster, Phys. Rev. 91, 1323 (1953).
The present result suggests that the same attractive
interaction appears between the lattice with N and
an electron added.
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Recombination-enhanced annealing of defects in semiconductors has been observed di-
rectly for the first time. The defects were produced in GaAs by 1-MeV electron irradia-
tion and observed by transient-junction-capacitance techniques. The data clearly relate
the enhanced defect annealing rate to electron-hole recombination processes at the de-
fect.

We have observed a new mechanism for the en-
hancement of defect reactions in semiconductors,
namely enhancement by electron-hole recombina-
tion at the defect. A direct correlation of defect
reactions with electron-hole recombination pro-
cesses at the defect has not previously been ob-
served. The details of such recombination-en-
hanced processes are crucial to the basic under-
standing of both defect motion and nonradiative
recombination phenomena in semiconductors.

The recombination-enhanced mechanism was
observed to produce a significant increase in the
annealing rate of 1-MeV-electron irradiation de-
fects in n-GaAs under conditions of minority-car-
rier injection. The specific identity of these de-
fects is at this time unknown, but it is reasonable
to expect that they are isolated vacancies, inter-
stitials, and/or simple complexes. These radia-
tion-induced defects are observed by a new junc-
tion-capacitance technique, deep level transient
spectroscopy (DLTS). ' With this technique it is
possible to measure for each defect the activation
energy for thermal emission of a carrier to the
nearest band edge, the concentration, and the
capture rates for electrons and holes. These
properties are highly specific to a particular de-
fect and allow us to resolve five levels whose ac-
tivation energies for electron emission to the
conduction band are 0.08, 0.19, 0.45, 0.76, and
0.96 eV and three levels with activation energies
for hole emission to the valence band of 0.32,
0.44, and 0.76 eV. A typical DLTS spectrum is
shown in Fig. 1. The full details of the proper-
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FIG. 1. A typical DI.TS spectrum of 1-MeV electron
irradiated n-GaAs. The energies shown are the mea-
sured activation energies for emission of a carrier to
the nearest band edge. The positive signals are due to
hole traps (injection pulse scarp while the negative sig-
nals are due to electron traps (majority-carrier pulse
scan) .

ties of these defects will be published elsewhere. '
For the purpose of demonstrating recombination
enhancement we will focus on the 0.45-eV elec-
tron trap shown in Fig. 1.

Junction-capacitance techniques such as DLTS
are ideal for these studies since it is possible to
independently vary both the average charge state
and the electron-hole (e-h) recombination rate at
a particular defect. The charge state can be var-


