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A new integral formalism for gauge fields is described. Further developments are
presented, including gravitation equations related to, but not identical with, Einstein's
equations.

It was pointed out by Weyl many years ago
that the electromagnetic field can be formulated
in terms of an Abelian gauge transformation.
This idea was extended' in 1954 to the concept
of gauge fields for non-Abelian groups. That
formulation, like the Weyl formulation for elec-
tromagnetism, was based on the replacement of
~& by 8& —ieB&. One might call such formula-
tions differential formulations. It is the purpose
of the present paper to reformulate the concept
of gauge fields in an integral formalism. The
new formalism is conceptually superior to the
differential formalism and allows for natural
developments of additional concepts. It further
allows a mathematical and physical discussion
of the gravitational field as a gauge field, re-
sulting in equations related, but not identical,
to Einstein's.

The basic point is the fact that electxornagne-
tism is a nonintegrable phase factor, a fact dis-
cussed many years ago by Dirac, Peierls, and
others, and more recently by many authors. '
This fact is now generalized as follows:

Definition of a gauge field Conside. r a mani-
fold with points on it labeled by x" (p, = 1, 2, . . . ,
n) and consider a gauge G which is a I.ie group
with generators X, (k =1, 2, . . . , m). [Foi G
=U(1) we have electromagnetism; for G non-
Abelian we have non-Abelian gauge fields. ] De-
fine a path-dependent (i.e. , nonintegrable) phase
factor y» as an element of the group G associ-
ated with path AB between two points A and B on
the manifold. The association is to have the
group property: p»& = p»y&c, where the paths
AB and BC are segments of ABC. Furthermore
for an infinitiesimal path A to A+dx" the phase
factor is close to the identity I of G, so thats

y~(~+~, ) I + b„"(x)X~dx" . —— (1)

The function b& (x) defined on the manifold will
be cal]ed a gauge potential; y» will be called a
gauge phase factor.

With this definition additional concepts and the-

orems are naturally developed. We summarize
some of these below. Details wi1l be published
elsewhere.

Gauge field strength. Consider a path ABCDA
forming the border of an infinitesimal parallelo-
gram with sides dx and dx'. p~&~~ can be com-
puted by multiplying four phase factors like (1)
together, resulting in

9ABCDA I+fp v Xa dx (2)

where

k 6P & II i & k k—
8 v -b) b C' =-f

px x

in which C;,' is the structure constant of G:

XkX; -X;Xk =Ck X;.

f„," will be called a gauge field, or gauge field
strength. They are the Faraday-Maxwell fields
when G =U(1).

Gauge transformation. —A gauge transforma-
tion in the integral formalism is defined by a
transformation

gAB 9 AB (AD AB5B

-1
9 ABCDA 9 ABCDA (AD ABCDA4

Thus

f„„"= &k
~ ~„,. ~~ )f„,', (7)

where Bzpj is the adjoint representation for the
element Q. The simple transformation property
(7) is the definition for the concept that f&, is
gauge conaxiant. Generalization to other repre-
sentations A of C for a gauge-covariant quantity
4as) is immediate:E. 3.

~.»"=«I Il(~~)t ~) C.»'
b&' is not gauge covariant; f„, is.

Gauge covariant differ-entiation. —To retain

(8)

where $~ is an element of G which depends on the
point A. It is clear that under (5)
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gauge covanance in differentiation we define

„+l)„(K~Z&[J) lI)

where Sk is the matrix representation of X,. Gen-
eralization to other cases is obvious. An inter-
esting theorem is that

k k k
fp (x +f x( p +f) p) (10)

which is the gauge-Bianchi identity.
Introduction of a Riemannian metric S.o—far

we need no metric for the manifold. Now we in-
troduce a metric for it and discuss arbitrary co-
ordinate transformations. We come then natural-
ly to Riemannian covax~ant quantities and doubly
covaxiant derivatives. ~

p is Riemannian covari-
ant, since q» is coordinate-system independent.

fp, is doubly covariant. We have

lip ~ Ip&

H P,t, H Ij &/)E n
V lfp 'Y [p+) iI'r

k + g k'

fpv II X. fpv)lX ~ fn v
&) fpu

p,

etc. It is easily shown that
k k k

fpvll ) +fv Xlip +f) pll v

which is satisfied by all gauge fields on all Rie-
mannian manifold s.

Source of gauge fields. We define, —in analogy
with electromagnetism, a source four-vector Jp"
for a gauge field:

kilo
~p g fpull 1 fpv

After some computation one derives a theorem:

g" Jp ll), '=0 (conserved current),

which in electromagnetism states charge conser-
vation. In Ref. 1 this was Eq. (14). One can also
generalize Eqs. (15) and (16) of Ref. 1, leading
to the concept of "total charge. "

Parallel displacement ga-uge field. —For any
Riemannian manifold, the important concept of
parallel displacement defines, along any path
A.B, a linear relationship between any vector V&

at A. and its parallel vector V~ at B. Thus paral-
el displacement is defined by an ~&&n matrix M»
which gives this linear relationship. M» is a
representation of an element of GL(n). Thus we
have the following:

Theorem. —Parallel displacement defines a
gauge field with G being GL(n). The index k has
n2 values and we write &= (&P). The gauge poten-

tial and gauge fields are respectively

(~8) ( + f(~8)
p

) p
~ pv 8pv

It is important to recognize that in this defini-
tion we have chosen a fixed coordinate system.
A coordinate transformation would generate a
linear transformation in the vector spaces V&
and V&. In other words M~&-%~M~&N&"'. Com-
parison with (5) shows thus that a coordinate
transformation generates a simultaneous gauge
transformation of the parallel-displacement gauge
potential. In fact, the usual nonlinear term in the
transformation of f~"&) is precisely the nonlinear
term needed in the gauge transformation of the
gauge noncovariant quantity bp( 8). In this con-
nection we observe that for GL(n),

(na)
C(Xp)(„g) = &p~&n~&8g —~~g~n~~gp . (16)

Thus by definitions (9) and (ll)

g, t, (n8)
q(a8) Y'

t (xU) C(cx8),),(gg)
lip g ~p p (gp)(gg) &

= 0"8,p,
where the semicolon represents the usual Rie-
mannian covariant differentiation with n and P
treated as usual contravariant and covariant in-
dices. The rule works also in general. E.g. ,

g( ne) ~n
PVli X ~" BPIj; X '

Nontxi vial sourceless gauge fields. -Gauge—
fields for which fp,

"&0 and J
p

—-0 are of physi-
cal interest. So far only nonanalytic examples
are known. '

We now can construct two general types of gen-
eral types of examples.

(a) Consider the natural Riemannian geometry
of a semisimple I ie group. Its parallel-displace-
ment gauge field is sourceless and analytic.

(b) Consider the same Riemannian manifold of
a group G as above in (a). Define y&8 as that for
an infinitesimal path A.B, y~s = (A 'B)"' This.
gauge phase factor which is itself an element of
G gives a gauge field which is analytic and
sourceless.

Pure spaces. —A Riemannian manifold for
which the parallel-displacement gauge field is
sourceless will be called a pure space. A riec-
essary and sufficient condition for a pure space
1S

+pn; g ~p8;n

A four-dimensional Einstein space, i.e. , one for
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which A„B ——0, is a pure space
Gravitational field as a gauge field. —The elec-

tromagnetic field and the usual gauge fields are
special cases of gauge fields, satisfying (12) and
(13). A natural question is whether one should
identify these same equations for the parallel-
displacement gauge field as the equations for the
gravitational field. There are advantages in this
identificationand we shall come back to this topic
in a later communication. If one adopts this iden-
tification then gravitational equations are third-
order differential equations' for g&, . A pure
gravitational field is then described by a pure
space as defined above.

Variationgl principles. —Equation (13) with J&
=0 follows from a variational principle
5f 4 gd" x-=0, where

I =f~.'fns' g""g '
Cea C~~ ~ (20)

In the variation g~, is kept fixed and b& is var-
ied, and f&,

" is given by (3); C~, are not varied.
One could also find a variational principle which
is satisfied by a pure space (19). Choose C„' to
be the structure constants for GL(n), given by
(16). Write the I of (20) as a functional of b&~

"8
and g

L (t, (n8) Xu)
P

which of course also contains derivatives of b&'

and g '. Now form the variation

(0'.g) Xp L gp
p &

p+

xE-g d "x=0, (22)
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in which 5&
' and g

' are independently varied.
The resultant equations are satisfied by (15) and
{19).
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