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It is pointed out that, in contrast to the case of S-wave two-body bound states, the size
of a many-body bound state remains finite (irrespective of its angular momentum) even if
its binding energy vanishes. Physical implications for barely bound many-body systems
are outlined.

The size of an S-wave two-body bound state di-
verges as the binding energy of the bound state
vanishes. This has an important physical impli-
cation, recognized long ago in connection with the
first investigations of the deuteron'. The size of
an S-wave barely bound state is approximately
1/(2plEI)'~'=1/q, where p, =m, m„/(m, +m, ) is
the reduced mass of the two-body system and E
is its binding energy (h = c = 1). Thus any (rea-
sonable) model of the neutron-proton interaction
that fits the deuteron binding energy yields a
deuteron wave function having essentially the
same extension, -1/q (much larger than the
range r, of the interaction' ). Therefore any ad-
ditional information on the neutron-proton inter-
action, besides that implied by the value of the
binding energy, can result only from measure-
ments of the deuteron size that are sufficiently
accurate to display corrections of order qrp I ela-
tive to the dominant term. '4

This phenomenon is peculiar to S-wave two-
body bound states. In fact, the wave function of
a two-body l-wave bound state is proportional,
for r»r, (where r is the interparticle sepa, ra-
tion, and r, is the range of the forces' ), to the
(asymptotically vanishing) free solution of the l
wave Schrodinger equation, (qr) '"K„»,(qr), '
and therefore it becomes c(2/ —1)!!(qr) ' "~ for
r «r «1/q and c(qr) ' exp( —qr) for r» 1/q, c
being a constant whose value is determined by
the behavior of the wave function for x S r„and

by the normalization condition. It follows that,
in the zero-energy case, the wave function is
asymptotically proportional to x ~'"~, being
therefore, for l & —,', still normalizable, and im-
plying that the expectation value of r I~I is finite
for Ipl&p, =2l —1. Moreover, simple power
counting shows that, for an l-wave two-body
barely bound state (i.e. , such that qr, «1), the
expectation value of rl~l is of order r ~l for Ipl
&p r Iul l„(qr ) for Ipl p a„d r I~l(qr )~0-l~l

for I pl&p, . These estimates refer to the case
l & 2, i.e., when the normalization integral re-
mains finite for q = 0; note that in all cases the
result depends on r, . For l & 2 one finds instead,
as a result of the divergence of the normalization
integral for q =0, that the expectation value of
r I~I, is of order q !~I, i.e., independent of the
value of r, (provided qr, «1).

These results display the exceptional nature of
the two-body S-wave case, and imply that even
rough measurements on two-body higher-wave
barely bound states would yield more information
on the forces than that conveyed by the binding-
energy value —in contrast to the S-wave case.

This property of higher-wave barely bound
states originates from the normalizability of the
bound-state wave function in the zero-energy
case, or, equivalently, from the finite size of the
zero-energy bound state. The purpose of this
Letter is to point out that, in analogy to the two-
body higher-wave case, and in contrast to the
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two-body S-wave case, the size of an N bo-dy (N
& 2) bound state' remains finite (irrespective of
its angular momentum) when its binding energy
vanishes, provided no (N -n) bod-y (0 &n &N —1)
bound state exists."We prove here this result
for N = 3, and outline the proof for N & 3. For
simplicity we prove the result for spinless iden-
tical particles interacting via two-body poten-
tials, but none of these restrictions is essential

for its validity. '
The physical implications of this result refer

to barely bound many-body bound states, and are
analogous to those indicated above in the higher-
wave two-body case. They are outlined in the
last part of this Letter; we hope to be able in the
near future to publish a more complete treat-
ment.

The proof for the three-body case is based on
the homogeneous Faddeev equation".

X(ky Pt E) mfd P f (ky 2P P y
E 'rP /m)X(p+ 2P P E)

+ t(k, 2P+O', E —z.p'/m)X(-9 —RP', O', E)]/(p'+p "+P P'- mE)

Here k and p are connected to the momenta of the three particles in the usual way, k = gk, -k,}, p
= &(k, +k, - 2k, ), E is the total energy in the c.m. frame, and X(k, p, E) is related to the Fourier-trans-
formed three-body wave function %(k„k„k,) by the relation

e(k„k„k,) = [(1+I'„+Z„)X(k, p, E)]/(~P'+ k' - nm), (2)
where I'„ is the operator that permutes particles i and j, and m is the mass of the particles. Thus
the normalization condition for the bound state sets the integral

I= fd kd p~ X(k, p, E)+ X( —2k —&p, ——,'P+k, E)+ X(- 2k+ &P, —2P -k, E)~'/(&p'+k' —mE)' (3)
equal to a constant. The task is to prove that I remains convergent (at k =0, p ~0) even for a solution
of Eq. (1) with E=0.

The function t(k, p, E } in Eq. (1) is the two-body off-shell t matrix, and it is certainly finite at k =0,
p =0. It is moreover nonsingular for E'&0, and finite for E'=0, provided there are no two body bou-nd
states. But then Eq. (1) implies that X(k, p, E) is also finite at k =p =E =0, and then simple power
counting shows that I remains convergent at k ~0, p =0 even for E = 0, Q.E.D.

Using the fact that X(k, p, 0) is finite at k =p = 0, one can easily evaluate the asymptotic behavior of
the three-body wave function 4'(r„, r„r,):

4(r„r„r)s-const(r»'+ r»'+ r»') ',

implying again convergence at large r, , of the normalization integral

(4)

fd'r„d'r, d'r, 5(r, + r, + r, ) ~e(r„r„r3)~'.

Note that Eq. (4) corresponds simply to the behavior at large r, , of the (asymptotically vanishing) free
solution of the zero-energy three-body Schrodinger equation; indeed for negative energy E and in the
N-body case, this solution is just the free translation-invariant Green's function"

G„(E;r„.. ., r„)=—2 (2m) ~~ '~ q~ " '~ 'p ~ ~ ' '~K,„,,(qp),

where m is the mass of the particles, q' = 2m IE I,
and

p'= Z lr;-r, l'/N.

I

This remark displays the connection of the many-
body case with the higher-wave two-body case
discussed above, indicating the similarity of the
mechanisms that bring about the convergence of
the zero-energy normalization integrals. " This
same remark indicates that the result must be
true for N & 3; a formal proof can be based on
the Faddeev-Jakubowski equations, '4 the require-

ment of nonexistence of (N-n)-body bound states
being related to the occurrence of (N -n)-body
off-shell t matrices as kernels in these equa-
tions.

The Faddeev (and Faddeev-Jakubowski) equa-
tions provide the most convenient tool to prove
our result, since they neatly display the role
played by the requirement that there be no (N
-n)-body bound states It is, ho. wever, illumi-
nating to also try to understand in more physical,
if less rigorous, terms the mechanism whereby
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the presence of (N —n)-body bound states alters
the asymptotic behavior of the zero-energy many-
body wave function.

I et us refer, for simplicity, to the three-body
case, and focus our attention on the physically
more interesting case of a barely bound state
(i.e. , such that qr, «1, with q'=2mlEl). Then if
a two-body bound state, with (negative) energy
E, &E, exists, the three-body bound-state wave
function contains asymptotically several terms
(that give the dominant behaviors in different
sectors of configuration space), "one of which is
proportional to (q, $) '~'K„», (q, $)y(il), with,

= mlE, I, and q, '+ 2q, '=q'. This term is of course
to be interpreted as a quasi-two-body bound state
of angular momentum /, composed of particle 1
and the two-body bound state (with wave function

p) made up of particles 2 and 3. The size asso-
ciated to this term will then be much larger than

ro, if the bound state of particles 2 and 3 has
zero angular momentum (in which case it would
have a size of order 1/q, & 1/q» r, ), or if /=0
(in which case it would have a size of order 1/q,
& 1/q» r„), or if both things happen (in which
case it would have a size or order 1/q, or 1/q.„
whichever is larger). " lt is also clear, on the
grounds of physical continuity, that similar esti-
mates of the size of the three-body barely bound
state obtained under the hypothesis that, in place
of two-body barely-bound states, there exist two-
body, very low-energy resonances or virtual
states. " But if instead no two-body barely bound
states, nor virtual states, nor very low-energy
resonances exist, then our result implies that
the size of a three-body barely bound state is of
order r, «1/q. "

As indicated by these considerations, the main
phenomenological implication of our remark re-
lates to the size of barely bound N-body systems;
it would therefore lead to specific predictions for
several observables involving such systems
(form factors, vertex functions, transition proba-
bilities, reactions). Suffice it here to note that
the main parameters affecting such predictions
are the expectation values of r ~I, and that for
these quantities, under the conditions implied by
the above discussion, exactly the same results
as given above for a two-body I-wave barely
bound state hold, except for a redefinition of p„
that now reads p, =2E;„+3N —7." Here Jf „..„ is
a nonnegative integer that is uniquely determined
by the angular momentum, parity, etc. of the A'-

body state, and by the properties of the particles

that constitute it (in particular, the kind of sta-
tistics they satisfy); it equals the minimal value
taken by the sum of the quantum numbers l, char-
acterizing the angular momenta of the Jacobi co-
ordinates. "

Finally we mention that, while in this paper we
have focused on bound states, many of the phe-
nomenological considerations also apply to (very
low-energy) N-body resonances. A convenient
technique to display the analogy is the Hilbert-
Schmidt technique, that allows one to associate
normalizable wave functions also to resonances,
and therefore provides a firm ground for the dis-
cussion of properties related to their size. '-'
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'Throughout this paper, for simplicity of language,
we refer to zero-energy two-body S-wave states, even
though, as discussed below, the corresponding wave
functions are not normalizable (so that, strictly speak-
ing, one shouM refer to such states as zero-energy
resonances) .

2E. P, %'igner, Z. Phys. 83, 253 (1933), and Phys.
Bev. 43, 252 (1933); H. A. Bethe and B. Peierls, Proc.
Boy. Soc. , Ser. A 149, 176 (1935).

3Por the deuteron, 1/q =4.3 fm; the pion Compton
wavelength A, that sets the scale of the longe~-range
part of the nucleon-nucleon interaction, is less than one
third of that Q, =1.4 fm) .

4The Wigner-Bethe-Peierls argument applies only to
the S-wave part of the deuteron wave function (see be-
low); indeed any property of the deuteron related to the
(small) D-wave part of the wave function does provide
additional information on the nucleon-nucleon potential,
besides that implicit in the value of the deuteron binding
energy.

We are assuming, for simplicity, that the potentials
vanish exponentially at infinity; but for the validity of
the main result it is sufficient that they be integrable at
long range (i.e. , in three-dimensional space, that

~'V(&) vanish asymptotically for some e &0) . The ex-
clusion of long-range potentials (for instance, Coulomb)
is of course essential.

Here, and in the following, K~(Z) is the modified
Bessel function of the third kind. Also note that, where-
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ever we mention the wave function, we understand the
full (three-dimensional) wave function, namely, that
normalized by fd r

~ 4~ = 1.
7Here, and always in the following, we exclude the

exceptional case of positive-energy bound states.
This result {for X=3) is implicitly contained in a

report given some years ago by one of us [Yu. A. Simo-
nov, in proceedings of the problem Symposium of Nu-
clear Physics, Tbilisi, U. S.S.R. , 1967, Vol. I, p.7],
and has been explicitly evinced froxn this reference by
V. N. Efimov, who (in an unpublished seminar) me-
tioned this fact as the reason why the Efimov effect
(V. N. Zfimov, ( JETP Lett. 16, 34 (1972)], and Nucl.
Phys. A210, 157 (1973)] is not expected to occur for N
&3, Lt should be emphasized that the result reported
here for zero-energy bound states cannot be obtained
by a simple limiting process from the results given in
the recent papers dealing with the asymptotic behavior
of the three-body wave function, that consider only non-
zero-energy states: S. P. Merkuriev, Teor. Mat. Phys.
8, 235 (1971), and Yad. Fiz. 19, 447 (1974) (Sov. J.
Nucl. Phys. , to be publishedj; R. G. Newton, Ann.
Phys. (New York) 74, 324 (1972).

The condition excluding (N-n)-body bound states
might appear trivial, as a result of the assumed exis-
tence of a zero-energy X-body bound state (see also
Bef. 7). But the critical assumption for the validity of
the theorem consists in the exclusion of zero-energy
(N-n)-body bound states; and this is not an altogether
exceptional eventuality, since it is for instance known
that a zero-energy tw'o-body bound state implies the ex-
istence of an infinite number of three-body bound states,
whose energies accumulate at zero (this is the Efimov
effect; see Bef. 8). The importance of this condition
relates however mainly to the physically more relevant
case of an N-body barely bound state, i,e. , a state with
nonvanishing, but very small, binding energy (see be-
low). Let us also emphasize that the N-body bound
state under consideration need not be the ground state
of the N-body system.

W'e treat for simplicity only the case of ordinary
(three-dimensional) space; the structure of the proof
implies that the Inain result remains valid in d-dimen-
sional space, provided d(X—1) & 4."I.D. Faddeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960)
I.Sov. Phys. JETP 12, 1014 (1961)].

'~See, for instance, F. Calegero and Yu. A. Simonov,
Nuovo Cimento 568, 71 (1968). We refer here, for
simplicity, to the case of spinless bosons. For the
more general case, one must introduce the quantum
number K~ j„(see below) .
~3The connection between the many-body bound-state

problem and the higher-wave bvo-body problem has been
been already pointed out and exploited in a different,
but related, context: F. Calogero and Yu. A. Simonov,
Phys. Bev. 169, 789 (1968).

O. A. Jakubowsky, Yad. Fiz. 5, 1312 (1967)[Sov. J.
Nucl. Phys. 5, 937 (1967)]; L. D. Faddeev, in Three-
Body Problem in ¹clearand Particle Physics, edited
by J. S. C. McKee and P. M. Bolph (North-Holland, Am-
sterdam, 1970), p. 154.
' See, for instance, Merkuriev, Bef, 8, where, howev-

er, the function z ' X, +&y2(z) is replaced by its asymp-
totic part z 'exp(-z).

"An example of the last kind (and with g & «q&) is hy-
eut =-2.23 MeV, Egyptrjt

70ne such example might be the trineutron, if it ex-
ists as a bound state (or resonance; see below).' These arguments indicate that, if selection rules
prevent a barely bound state for dissociating into S-
state components, then its size would be of order ro
«1/q even if two-body bound states or resonances ex-
ist. A three-body bound state with odd angular momen-
tum and positive orbital parity is one such example.' Of course the coefficient of the term giving the domi-
nant contribution for small q depends on N, and on the
precise definition of r.

20See, for instance, the report by Yu. A. Simonov, in
The Nuclear Many-Body Problem, Proceedings of the
Symposium on Present Status and Novel Developments
in the Nuclear Many-Body Problem, Borne, 1972, edit-
ed by F. Calogero and C. Ciofi degli Atti (Editrice Com-
positori, Bologna, 1974), Vol. 1, p. 527. For instance,
for a 1" system composed of three pions pike the ~
meson), E'~jp 29 for a 0 state of four identical fermi-
ons, K~jQ 3 and of course for the two-body ease,
+D]in=i ~

'See, for instance, S. Weinberg, Phys. Bev. 131, 440
(1936), and, for a more detailed discussion of three-
body resonances, A. M. Badalyan and Yu. A. Simonov,
Yad. Fiz. 17, 441 (1973), and 18, 73 (1973) [Sov. J.
Nucl. Phys. 17, 225 (1973), and 18, (1973)].

439


