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Conduction-electrons tensors depending on electron rnomentuln can (through the cyclo-
tron motion of the electron) cause transitions between spin Zeeman levels which broaden
and shift the conduction-electron spin resonance. Tensor quasiparticle interactions are
capable of similar effects. The relaxation time and exchange parameter controlling mo-
tional and exchange narrowing of the conduction-electron spin resonance are precisely de-
fined.

I ubzens, Shanabarger, and Schultz' have re™
cently reported detailed measurements of the
frequency dependence, temperature dependence,
and dependence on resistivity ratio of the g value
and linewidth of conduction-electron spin reso-
nance (CESR) in aluminum. The initial report'
of CESR in aluminum led Dupree and Holland'
to suggest that g anisotropy might be important,
and theories of motional and exchange narrowing
of g anisotropy have been formulated by de Bot-
ton' and Fredkin and Freedman. ' The results of
I ubzens, Shanabarger, and Schultz' fit very well
the predictions of these latter theories. "

In the present work, the tensor nature of the

g value is explicitly considered (for the first
time) and such considerations lead to new pro-
cesses affecting the linewidth and g shift of the
CESR. In the light of this development, a rein-
terpretation of the results of I ubzens, Shana-
barger, and Schultz' would be useful, as it is
believed that these new results may strongly
affect the value of the pa.rameter B (defined
below).

Also, the motional-narrowing relaxation rate
is given in terms of a weighted average of the
impurity scattering cross section, ' the weight-
ing factor being different from that determining
the resistivity relaxation rate. Similarly, the
exchange parameter B controlling exchange nar-
rowing is precisely defined.

Finally, we follow up a remark of de Botton'
that the influence of spin-orbit coupling on the

quasiparticle interaction can produce effects
qualitatively similar to those produced by g an-
isotropy. A new type of tensor quasiparticle in-
teraction is introduced and is shown to give rise
to contributions to the effective g tensor. Nothing
is presently known about the magnitude of such
tensor interactions, but it is known that the mag-
nitude of the g anisotxopy required to account for
the aluminum results is surprisingly large. ' A
first-principles estimate of the magnitude of the
tensor interaction would thus be of value.

We shall study in detail an isotropic electronic
Fermi liquid. For a Zeeman Hamiltonian of the
form Hz= -g(p)p, q s 'H to be invariant with re-
spect to simultaneous rotations of s, H, and p,
we must have g(p) independent of the direction p.
Anisotropy in g can only be introduced by the use
of a g tensor, and we therefore assume a Zee-
man Hamlltonlan

IIq= -p z s ' g ' H, g = golt. + ~ g2 T,

T =3pp —I . (2)

The quantity 1 is the unit dyadic, and p denotes
a unit vector in the direction of the electron mo-
mentum.

The tensor part of the Zeeman interaction can
be written in the form -g, p. zs H,q~, where H, f f
is an effective magnetic field given by Hgf f
=2[3p(p H) —H]. The effective field has a com-
ponent in the direction of the momentum of the
electron, as well as a component along the ex-
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py(e) =& t(2t+1)BtI' t(cos&), (4)

where p is the density of states.
Now let o = ao+ & o, where ~ &0 is the spin density

induced by the static external field Ho, and write

« = -(&f,/s~)G(p, r, t), (5)

where f, =2[exp(Pe~)+1] '. We shall look for the
homogenous normal modes only (i.e., assume
that G is independent of r). The components G„
(n = 0, +1) of 0 are defined by G, =G„and Gt1
= (1/W2)(G, ~iG, ); the external field H, is as-
sumed along the z axis. G„(p) can be expanded
in spherical harmonics, i.e.,

ternal field. Since the electron momentum pre-
cesses around the external field at the cyclotron
frequency, co„ the effective magnetic field has
a time-dependent component which can cause
transitions between the spin energy levels. As
a result of collisions of the electron with im-
purities or phonons, however, the cyclotron
frequency is not sharply defined, and H,«pos-
sesses a spectrum of frequencies lying in the
range ~, —v ' & u & x, + ~ ', 7"' being the collision
frequency. So long as the electron spin-reso-
nance frequency lies within this range, H, ~~ can
limit the lifetime of the spin by causing transi-
tions between its energy levels. The precessing
component of H, q~ also gives rise to a g shift,
as will be seen below. Thus the tensor nature of
the g value gives rise to new effects which are
not present in previous theories' ' assuming a
scalar g value.

Following Silin, ' and making use of the Zeeman
interaction as defined by (1), the spin-dependent
part of the quasiparticle interaction is written
&&,z(p, r, t)=-o,z'e, (p, r, t), where the compo-
nents of a,„are Pauli matrices,

e 2 (p r t ) = -~ V tt g ' H

+Q-, g(p, p')f(p', r, t), (3)

and & tl(p, r, t ) is the spin density in phase space
at time t. As a result of the assumed isotropy,

depends only on the angle 8 between p and p'
and can be written

wh~re @&,= -[gap t Ifo/(1+B, )] (note g+& 0 for
electrons), O'Z), =-j[g,/(1+B,)] p, ~T ~ H, and G'
= 0+ 6e, . Collisions of electrons with impurities
are described by the l t's in (7) following Wilson
and Fredkin, ' the ~&'s being defined as in the
electrical-resistivity problem (e.g. , see
Pelex'ls ), l.e.,

7', '= f [1-P,(cose)]ttt(0)dn, t-1. (8)

The resistivity is controlled by 7,.' w,
"' as de-

fined by (8) is zero, but is assumed to have a
small nonzero value arising from spin-orbit
coupling.

The tensor g value couples the different com-
ponents, G„, of G in Eq. (7), and this makes the
solution of (7) more complex than in cases pre-
viously considered. ' '" "0 Therefore we intro-
duce a different method motivated by the approach
of Wangsness and Bloch, and Redfield" to the
general motional-narrowing problem. The start-
ing point is a transformation to an interaction
representation in which 6„ is defined by

G „(t)= G „(t)exp(i u& „t),
i~„=(inn, —im~, —l-t t)(1+B-,),

where r= (n, t, m). Matrices

A„„.(t) = exp(-i&a„t)A„„,(0) exp(ittt„, t)

are defined by the equation

exp(-i(u„t)fdQ Ft *[(tt2XG'] „
= i+„,A. „„,(t) G „.(t) .

Equation (7) now becomes, in this interaction
representation,

dG„(t)/dt = i+ „,A„„,(t) G„,(t) (12)

%e are interested in the frequency and decay rate
of the CESR mode which, in the limit u, =0, is
an oscillation of 6 ]Oo' we call this the r=0
mode [i.e. , (n, t, m) = (-1,0, 0) implies r = 0].
Therefore, Eq. (12) is solved by iteration to
second order in'. „& subject to the initial condi-
tion that, at t=0, G„=Go(0)&„~,. This yields the
expression

Gn(p)=KG t 1't (~, 0).
lm

The equation of motion for G„t is [from Eq.
(5') of Silin]

dc~, = (iaido —im&u, —1/wt)(1+Bt)G„t

+f dn 1't„+[td, &&G']

(6)
i . (1 +Bo) ~ Ao„(0)A, „O(0)

( )R —~ —
0

—Z +
M „—GOD

for the frequency, ~R, and transverse relaxation
time, T„of the CESR. This solution is valid
when [A„o[ «[&u„—td, (, where r &0; this inequali-
ty implies, for example, that our results have
no significance in the limit S&-0 first, and 7&

—~ later. The result (13) is valid, however,
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for cases' of current interest experimentally. The values of r contributing to (13) are r = (0, 2, 1) and
r = (—1, 2, 0) and the explicit evaluation of (13) leads to the results

(d —(d (1+B )B(co z & 7, ' (1+B )((d —Cu, ') [((d „&+((d, ~] 7 '
(14)

1 1 (1 ~ B,)(1~ B,)(&u„'& i, ' (1+B,)(1+B,)-, [(~,„'&+(~„'&]T,
'

(15)

The notation ( ' ~
& = (4') ' J (' ' ' ) dQ giving

&~„'&=-;&~,„'&=-,'(~„'&=-', [a.VB«(1+B,)If]'.
Also v, '=so/(1+B, ), r, '= v, /(1+B,), (u, '=(g (1 pB,)

B = B,—B,= (4B) 'p f [1-P, (cos8)] ((0)dQ .
A Zeeman Hamiltonian of the form

+z A(P)OBs 'H [go+ 2 A2Tzz(P)] OBs'

would give the terms in (14) and (15) linear in
(&u„'&; these are thus formally analogous to re-
sults obtained previously. "' The terms linear
in B[(&u,„'&+(&u»'&] give the contribution of the
new lifetime effect. Note that the latter terms
can be obtained from the former by replacing B
with [(~,—(u, ')/u, ], and &(u„'& with 2[& ~,.'&

+(~., '&].
The value of B for Al obtained by Lubzens,

Shanabarger, and Schultz' is unreliable as they
were not aware of the possible influence of a g
tensor in producing the lifetime effect described
here.

In the case of a nonspherical Fermi surface,
there will be a distribution of cyclotron frequen-
cies depending on the external field direction;
this will cause the g shift and linewidth to be
anisotropic (anisotropy is observed in Cu and

Ag ').
The experiments of Lubzens, Shanabarger,

and Schultz' show that the motional-narrowing
relaxation rate differs from the resistivity re-
laxation rate. Both rates are weighted averages
of the impurity scattering cross section m(8)
[see Eq. (8)], but the motional-na, rrowing rate
T, ' uses a weight factor [1-P,(cos&)] which
weights most heavily collisions which signifi-
cantly change the g value, whereas the resistiv-
ity rate v, ' uses the weight factor [1 —P, (cos8)]
which favors backward scattering. These weight
factors are compared in Fig. 1. The weight fac-
tor [1-P, (cos&)] also determines the exchange
parameter B responsible for exchange narrowing;
this is consistent with the fact that exchange be-
tween electrons with equal g values is unimpor-
tant in the exchange-narrowing process. The re-

cent progress in determining impurity scatter-
ing cross sections' means that one might soon
be able to calculate r, from Eq. (8) for specific
impurities, and this would be useful in inter-
preting CESR experiments.

The preceding discussion assumes an interac-
tion between quasiparticles with momenta p and
p' of the form P(p, p')o o' [see Eq. (3)]. For our
isotropic model, however, interactions between
quasiparticles of the form

p 'D& [T(p)+T(p')]'o' (17)

are allowed by symmetry (D is a dimensionless
parameter which characterizes the strength of
this interaction, which se call the tensor interac-
tion). Following Silin' [but including the tensor
interaction (17)] the energy of a quasiparticle in
an external field Hp is written & =0 '&, p where an
integral equation [Silin's Eq. (6)] is found to de-
termine &2p The solution of this equation is

&2p — &gp PoHp &g2 VBT Hp& (18)

0

FIG. 1. Comparison of the weight factors b —Pq(p)]
and [1 —P2(p) ) usaf to define the resistivity and motion-
al-narrowing relaxation rates; p =cos~ and ~ is the
scattering angle.
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where

g Dg 2D
I+a, g,(1+@,) (&+a,)(1+@,)

g2 —2Dgog2'= 1+B

correct to second order in D and g.
Since tensor quasiparticle interactions con-

tribute to g, ' in (19), they can be expected to
produce effects similar to those produced by a
nonzero g, in Eq. (1). A complete analysis of
these effects bears out these expectations.

Since the g tensors and tensor interactions
considered in this paper limit the lifetime of a
spin, a contribution to T, ' similar to the final
term. in (15) will result. No such contribution
to T, ' will result in the case of the scalar g
considered in Refs. 4 and 5. A measurement of
&, would thus distinguish between models em-
ploying a scalar g and those employing a tensor g.

In summary, the above results [Eqs. (14) and
(15)] provide a basis for a qualitative interpre-
tation of motionally and exchange narrowed CESR
similar to that observed in Cu, Ag, and Al. ' To
make the interpretation quantitatively accurate,
however, the true Fermi-surface geometry must
be considered (because of its effect on the cyclo-
tron frequency, for example); this would be of
particular interest in the cases of Cu and Ag
which display anisotropic CESR.

Finally, we note that the question "which has
the dominant effect on CESR, the momentum-
dependent g tensor, or tensor quasiparticle in-
teraction?" has yet to be answered.
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