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Excitation functions for the 0+, 2+, and 4+ states of Er, W, and W were mea-
sured at 140' and 173.5' with incident n-particle energies between 12.5 and 19 MeV.
Strong destructive nuclear-Coulomb interference effects were observed. A coupled-
channels code was developed and the deformation parameters P2 and P4 of the optical
potential were determined and are compared with those of the charge distribution, P2
and P4'.

In recent years systematic experimental infor-
mation has been accumulated concerning quadru-
pole and hexadecapole deformations in the rare-
earth region using two different methods, i.e.,
Coulomb excitation by means of e particles' ~

and inelastic scattering of e particles well above
the Coulomb barrier. " From Coulomb excitation
experiments it is possible, after making some
reasonable model assumptions, to extract defor-
mation parameters P,

' and P,' for the charge dis-
tribution. Experiments far above the barrier, on
the other hand, yield the deformation parameters
of the optical potential. Early comparisons be-
tween the two types of experiments seemed to in-
dicate that the deformation parameters obtained
from high-energy (n, a') scattering were substan-
tially smaller than those obtained by electromag-
netic methods. This difference may, in principle,
be attributed to one or both of two reasons:

(l) There is no a Priori reason why the electric
charge distribution and the optical potential need
to have exactly the same deformation parameters,
though one would certainly expect them not to be
too different.

(2) It is well known that the quantities deter-

mined by inelastic scattering are not the IS„'s
rather something like a deformation length P~R, ~

where B is the nuclear radius. The extraction of
P~'s from electromagnetic moments, on the other
hand, depends critically (approximately like R )
on the radius parameter chosen for the charge
distribution. Thus some care must be exercised
in comparing P„'s obtained by these two different
classes of experiments.

The question of the connection between the de-
formation of the charge distribution and that of
the optical potential is an intriguing orie. We ex-
pected experiments in the interference region be-
tween Coulomb and nuclear excitation to be most
sensitive to possible differences or equalities in

the two types of deformation parameters. Exper-
iments were carried out at laboratory scattering
angles of 140' and 173.5' in the energy range from
12 to 19 MeV on the isotopes ' 'Er, ' %, and
'"W. The experimental setup was similar to that
used in earlier work of our group. ' Its salient
features are an annular surface-barrier detec-
tor at 173.5', two surface-barrier detectors at
+140', and another pair of detectors at +30' which
served as monitors. A11 detectors were cooled to
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——20'C and overbiased. Spot targets of 3 mm
diam, about 20 pg/cm2 thick, on 20-pg/cm2 car-
bon backing were produced by vacuum evapora-
tion of the enriched isotope oxides. The energy
resolution for all detectors was -25 keV full
width at half-maximum. The yields of the elastic
and inelastic peaks were evaluated by means of
an iterative computer program which is based on
the assumption that all peaks have the same shape.
The overall uncertainty in the 2' and 4' yields is
about 2% and 3—5%, respectively. In the sub-Cou-
lomb region the uncertainties are smaller, about
1% and 3%. The values of the reduced matrix ele-
ments (0'IST(E2) II 2') and (O'II%(E4) II 4') were ex-
tracted from the Iow-energy cross-section ratios
with the help of the quantum-mechanical coupled-
channels code AHOSA for Coulomb excitation. '
From the moments, charge deformation param-
eters P~' were derived within the framework of
the axially symmetric rigid-rotor model, using
a deformed Fermi-charge distribution

with

R(8) =R'l 1+P, 'Y„(8)+P,'1'„(8)]

The procedure for choosing the parameters Ro,
p„and a was identical to that used in earlier

work of our group. The experimental points in
Fig. 1(a) represent the ratios dv„z/der, ~ of the
experimental elastic cross section to the elastic
cross section calculated under the assumption of
pure Coulomb excitation. The experimental points
in Fig. 1(b) are the double ratios (do, +j«0+),,z,/
dv2+/dao, ),~ plotted as a function of energy. Fig-
ure 1(c) is an analogous plot for the 4' double ra-
tios. The most conspicuous feature of the data
is the sharp increase in destructive interference
of the excitation of the 4' state between '"Er and
the W isotopes, This is in agreement with recent

of Bemjs et gE 9 on LMSm 166Er and 182W.

In order to interpret the data in the interference
region we expanded the coupled-channels Cou-
lomb excitation code A~OSA to include excitation
via a deformed optical potential. We found it nec-
essary to integrate the radial equations out to ar-
guments p =Ax =450. In the region of nonvanish-
ing optical potential a Numerov integration rou-
tine is used. Further out a Taylor expansion is
employed which is particularly fast in regions
where the interaction is purely electromagnetic. '
The convergence in the sum of partial amplitudes
from different channel spins is considerably im-
proved by using a procedure which is related to
the Pade approximation 8'x' Thus jn a typical
case only about 45 partial waves need to be cal-
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FIG. 1: Coulomb-nuclear interference in the elastic and inelastic scattering of m particles. The solid curves
represent the results of coupled-channel calculations. For details, see text.
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TABLE I. Reduced E2 and E4 transition moments and charge and optical-potential deformation parameters. For
detail's, see text.

«'ll (E2)ll2'&
(e b) P2' p

N'
p Nmt

«'lilt(34)ll4'&
(e b') p

N p N, &at

Rc
(Fm) RN, int

188Fr
i84W

i 8'

2.42 (0.03)
1.94 (0.03)
1.83 (0.03)

0.336 0.260 0.263 0.179 (0.054) —0.019 —0.025 —0.028 6.07
0.254 0.192 0.192 —0.243 (0.090) —0.089 —0.075 —0.076 6.257
0.239 0.181 0.182 —0.266 (0.095) —0.090 —0.075 —0.077 6.28

7.92 7.91
8.09 8.17
8.11

Our P4 deformation parameters for W' '"' are
considerably smaller than those obtained by
Bemis et al. 9 from sub-Coulomb data on W' 2.

However if one includes in the analysis of the Oak
Ridge National Laboratory data the interference
results, one obtains a P,' value of -0.11.

Hendrie has recently proposed a method of
scaling between the two types of deformation pa-
rameters which takes into account the geometry
of the situation. The parameters P,» and R» are
those calculated from the P, ' and R' using Hen-
drie's prescription. The agreement between the
P„" and the P~»'~' is extremely good, showing
that the two types of deformation parameters are
in the sense of Hendrie's model very consistent
with each other. It should be pointed out that the
expressions of Ref. 12 are derived under the as-
sumption that projectile and target have sharp
surfaces. They are therefore not strictly correct
but they are probably a pretty good approximation
for the geometrical aspects of the situation. A
more rigorous approach would involve the use of
folded potentials which has been successfully
employed by West, Cotanch, and Robson. '~
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