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A new bond-charge model for phonons in semiconductors of diamond structure is pre-
sented. I show that the flattening of the transverse acoustic phonon branches in these
materials can be understood by interactions involving the bond charges, when these
move adiabatically. The phonon spectrum of Ge is calculated using only four parameters,
all of which are physically meaningful, and very good agreement with experimental val-

ues is obtained.

The phonon dispersion relations of all semicon-
ductors with diamond or sphalerite structure® ex-
hibit one characteristic feature, from which only
diamond itself is excepted: The transverse acous-
tic (TA) phonon branches have very low frequen-
cies and are very flat away from the zone center,
although the corresponding shear moduli have
rather high values. In the following, I show that
this can be understood by interactions involving
the bond charges (BC’s), if these are allowed to
move adiabatically. My model also enables us to
elucidate the differences in the nature of the bind-
ing forces in the group IV materials.

Based on Phillips’s bond-charge model? for co-
valent crystals, Martin® has used a dielectric
screening model to calculate the phonon spectrum
of Si. He assumed that the bare-ion-core poten-
tials are screened in a nearly free-electron-like
manner; i.e., by the diagonal elements of the in-
verse dielectric function € {q+G, q+G’). This
metallike binding gives rise to short-range cen-
tral forces between the ions, which die out rapid-
ly beyond nearest neighbors. The effect of the
off-diagonal elements of €”! is described by Cou-
lombic interactions involving the BC’s. These
forces represent the covalent character of the

binding; they lead to effective noncentral forces
between the ions, which produce the stability of
the diamond structure against shear. The specif-
ic assumption was made that the BC’s were fixed
midway between the ions, even when the latter
are displaced. Martin obtained fair agreement
with experimental dispersion curves, except that
the flattening of the TA phonons could not be re-
produced.

In 1959, Cochran® pointed out that this flatten-
ing of TA branches, which in a Born and von Kar-
man model requires very long-range force con-
stants,’ is in fact due to mainly short-range ion-
electron and electron-electron interactions.
Cochran’s shell model (SM), however, has many
drawbacks. The noncentral two-body forces,
which are crucial for the stability against shear,
are not adequately understood.® Further, the
electrons in a bond are shared by two atoms and
it is unphysical to divide them between the two.”
Finally, it turned out to be impossible to extend
the SM to III-V compounds without introducing
many new parameters, although the phonon spec-
tra are very similar.? '

The starting point of my work is the bond-
charge model; i.e., I describe the effect of the
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metallike binding by central forces between near-
est-neighbor ions; the covalent binding shows up
in interactions involving the BC’s. However, I
relax the constraint that the BC’s are fixed mid-
way between the ions. Instead, I allow that the
BC’s move adiabatically like the electronic shells
in a SM. As a consequence, I have to introduce
short-range ion-BC forces in order to stabilize
the BC’s on their sites. I also take into account
interactions between neighboring bonds.

The dynamical matrix in my model is derived
in the usual way® by treating the BC’s as indepen-
dent lattice particles. In the harmonic and adia-
batic approximations, the Fourier-transformed
equations of motion for diamond-structure crys-
tals may then be written as

mwu=[R+(42%/€)Cplu+ [T - (22°/€)Crls, (1)

o=[T* - (222/€)Cp* u+[S+ (22/€)C Is. (2)

Here m, z, and € are the ion mass, the value of
the BC, and the dielectric constant, respectively.
The hypervectors « and s denote the displace-
ments of the (two) ions and (four) BC’s. R, T,
and S are the respective Fourier-transformed
force-constant matrices of the short-range ion-
ion, ion-BC, and BC-BC interactions. Cg, Cy,
and C g denote the corresponding Coulomb matri-
ces. The adiabatic approximation is expressed
by having put the mass of the BC’s equal to zero
on the left-hand side of Eq. (2). Thus, we are
able to eliminate the BC degrees of freedom s in
Eq. (1).

We have limited the short-range ion-BC and
BC-BC interactions to nearest neighbors. The
corresponding force-constant matrices are of
the same form as those between nearest and next-
nearest neighbor ions, respectively.® Moreover,
one can show that they enter the expressions for
the elastic constants in the same manner as those
ion-ion force constants, although divided by a
factor of 2 or 4, respectively. This comes from
the fact that, in the long-wavelength limit, the
BC’s move in phase with the ions, as if they were
fixed midway between them, just as in the Phil-
lips-Martin model., At shorter wavelengths, how-
ever, the BC’s move adiabatically under the in-
fluence of net forces acting on them.

This is a crucial point for the understanding of
the dispersion of TA phonons. To illustrate this,
let us consider a monoatomic linear chain with
BC’s midway between the ions. We assume a
short-range ion-BC force constant f, and for the
sake of simplicity we neglect the Coulomb forces.
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The interactions between two neighboring bonds
are described by a potential as first used by Keat-
ing:

V=(p/a*) R, Xy, +a?/4)2 (3)

Here §0,~=1705 +ﬁ0 - Ei is the distance vector be-
tween atom 0 and BC 7, with ;0,- being the equilib-
rium value; further a?/4=- FM-FOJ. In the linear
case, Vyields only a force constant f'=8/2 be-
tween neighboring BC’s. Proceeding then along
the lines sketched above, one finds the disper-
sion equation

2_ o ((f+2f) sin’(5ga)
mw?= 2ff+2f’ sin¥(lga) - (4)

The Phillips-Martin constraint leads to

mw?=2fsin*(3ga) + f' sin*(ga). (5)

In Fig. 1, various dispersion curves are shown
for the two approaches. The elastic constant

o« f+2f" is kept fixed for all curves, while the ra-
tio f'/f is varied. If f*/f>1, Eq. (4) depicts the
typical flattening of the dispersion curve away
from ¢=0. In this case, the ions are coupled
only weakly to the BC’s, which form an almost
rigid lattice. The ions vibrate like Einstein os-
cillators in this lattice, and their frequency is
given by the weak ion-BC force constant f. Only
in the long-wavelength limit, where the BC’s
move in phase with the atoms, does the strong
bond-bond interaction contribute to the dynamics
of the atoms, thus producing the high value of the

n/2a q—= T/a
FIG. 1. Dispersion curves for a monoatomic linear
chain with bond charges. Solid and dashed lines depict,
respectively, the curves according to Eq. (4) (adiabati-
cally moving bond charges) and Eq. (5) (Phillips-Martin

constraint), The elastic constant is kept fixed for all

curves.
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FIG. 2. Phonon dispersion curves for Ge, Solid cir-
cles represent the experimental values of Ref, 11. Solid
lines show the results of my four-parameter bond-
charge model. Dashed lines depict the results from the
shell model of Ref, 4, The unpublished curves in the
&,&,0) direction were kindly provided by W, Kress and
K. Kunc,

elastic constant.

In our calculation for Ge we have used four
types of interactions: (a) a central potential
@;-,(7) between nearest-neighbor ions; (b) Cou-
lombic interactions of point charges at the sites
of the ions and the bonds; (c) a central potential
@;-pc(7) between nearest-neighbor ions and
BC’s; and (d) the interactions between two adja-
cent bonds described by Keating’s potential as
given in Eq. (3). The condition of stable equilib-
rium relates the first derivatives of the short-
range potentials with the Madelung energy of the
system (see Ref. 3).

The phonon dispersion curves of Ge, as calcu-
lated with this model, are shown in Fig. 2. They
are compared to Cochran’s five-parameter SM,*
which also has the merit of limiting the short-
range force constants within nearest neighbors.
In our model four parameters are used; their
values have been found by a least-squares fit
from the neutron data of Nilsson and Nelin.!! As-
suming ¢;.gc’ =0, we have obtained ¢;.;"/(T,)
=10.15, ¢;.pc"'(7,/2) =8.76, B=4.3 (all in units
10% dyn/cm); 2z2/€=0.1616. The equilibrium con-
dition leads to ¢;.;"/7,=~1.13. The average de-
viation from experimental values of Ref. 11'is
about 2%, while the maximum error at some fre-
quencies is 5%. We may also compare the elas-
tic constants (in units 10*2 dyn/cm?: c¢,,=1.326
(1.29), ¢,,-c,,=0.825 (0.81), c,,=0.65 (0.67);
the experimental values as quoted in Ref. 6 are
given in parentheses.

The direct ion-ion force constant ¢;.;’’ domi-
nates in all phonon branches except in the TA
modes, which are independent of it., Thus, the
TA phonons depend only on the interactions in-
volving the BC’s. Just as for the linear chain
model, we obtain the peculiar shape of the TA
branches if the interactions between neighboring
bonds are rather strong as compared to the ion-
BC coupling. The latter consists both of the
short-range and the Coulomb part, which cancel
each other partially, so that the effective ion-BC
force constants are small: @.;¢’=0.61 and @.¢f /
T,=2.03. The Coulomb interaction between more
distant neighbors turns out to be less important;
one can show that a short-range model with ef-
fective ion-BC force constants, but without a
Coulomb term, yields very similar dispersion
curves. The contribution of ¢;.;’ due to the equi-
librium condition also turns out to be small and,
moreover, destabilizing. Furthermore, in the
short-wave TA modes, the BC’s approximately
move on surfaces where the potentials of Eq. (3)
remain constant. Therefore, in these modes,
only very small forces are transmitted between
the ions. Thus the ions vibrate like Einstein os-
cillators, and their frequencies are given by the
magnitude of the effective ion-bond coupling.

In the long-wavelength limit, the strong bond-
bond coupling yields the high values of the shear
moduli. As was indicated above, in this limit the
interactions involving the BC’s can be written as
effective interactions between the atoms. Apart
from some Coulombic term, we obtain the bond-
stretching and bond-bending force constants «;.;
=4,84 (3.8), B,;.;=1.07(1.3). These values are
quite similar to those of Keating,® which are giv-
en in parentheses. Moreover, concerning more
elaborate valence force field models,'? the trans-
mission of forces due to the adiabatic motion of
the BC’s provides a physical understanding of
terms which correlate bond lengths and bond an-
gles of adjacent tetrahedra.

Furthermore, the BC has the value of z 1.6,
which is comparable to z =2 used by Phillips and
Martin. However, in my model the BC’s do con-
tribute to the electronic susceptibility x=(e - 1)/
471, 1 have obtained 4mxgc=1.7. This number,
which represents the off-diagonal contribution to
€, is small compared to 47)¢,, =15 in Ge. Thus,
my result confirms the assumption of Phillips
and Martin that the dominant part of € comes
from the diagonal or metallike screening. This
is also corroborated by band-structure calcula-
tions,
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Detailed calculations for all diamond-type crys-
tals will be presented elsewhere; here we sum-
marize the most important results. When scaled

. with the ion plasma frequency, Si and a-Sn are
very similar to Ge. In diamond, the ion-BC cou-
pling is much stronger than in the other materi-
als; the bond-bond interaction increases to a
lesser extent. According to the above discussion,
this can be seen from the variation both of the TA
zone boundary frequencies and of the shear modu-
li. Furthermore, the direct ion-ion forces due
to the metallike binding show up only in semicon-
ductors; in diamond, however, all forces be-
tween the ions act via the bonds. Altogether, we
find that, with the increase of the metallike bind-
ing, the sublattices of the ions and the BC’s tend
to decouple from each other.

I have presented a new bond-charge model for
the phonons in tetrahedrally coordinated semicon-
ductors. For Ge, I have obtained very good
agreement with experimental phonon curves, us-
ing a four-parameter theory. The parameters
describe the two types of binding in Ge. The met-
allike binding shows up in central forces between
nearest-neighbor ions. These forces influence
dominantly the longitudinal acoustic and the optic
modes. The covalent binding is represented by
interactions involving the BC’s, only these forc-
es determine the dispersion of TA phonons; they
are essential for the stability of the diamond
structure against shear. When the BC’s are al-
lowed to move adiabatically, the typical flatten-
ing of TA branches away from the zone center is
obtained, if the ion-BC coupling is weak com-
pared to the interactions between neighboring
bonds. Thus, in the short-wave TA modes, the
atoms vibrate like Einstein oscillators; at long

111, 747 (1958),

waves, however, the strong bond-bond coupling
contributes to the dynamics of the atoms, thus
producing the high values of the shear moduli.
It is a pleasure to thank H. Bilz, W. Kress,
K. Rustagi, and R. Zeyher for many helpful dis-
cussions, and also K. Rustagi, R. M. Martin,
and B. Szigeti for critically reading the manu-
script.
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Direct evidence of covalency effects on spin densities of the Cu®** — F~ antibonding orbital
in ferromagnetic K,CuF, has been observed by means of critical scattering of neutrons.
The form factor observed was in good agreement with the one calculated based on linear
combination of atomic orbital wave functions using covalency parameters determined by

NMR.

According to Hubbard and Marshall,! the form
factor of a magnetic ion surrounded by ligand
ions is modified by the covalency, and such effect
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should be observed directly by neutron scattering.
This effect should produce on the form factor a
forward peak at small scattering angles less than



