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evidence for positrons in our energy range corn-
ing directly from the sources.
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An examination is made of the dimensional ana1ysis usually employed to solve the re-
normalization group equations for the asymptotic region. It is argued that if this analy-
sis is done systematically, one must in general add new inhomogeneous terms to the
asymptotic equations even after invoking Weinberg's theorem to discard the (generalized)
mass insertion term. These new inhomogeneities are entirely determined by the physi-
cal thresholds of the theory. They are shown to provide a natural exp1anation of Bjorken
scaling in interacting field theories.

Recently, some of the most exciting work' in the context of renormalizable quantum field theory has
been done by employing the Gell-Mann-Low' and Callan-Symanzik' equations in the deep Euclidean re-
gion. These equations relate the responses of the one-particle irreducible (1PI) Green's functions of a
renormalizable field theory to changes in the parameters of the theory. For example, in a theory with

one field we have

[ve/s v+ p(g)8/sg —ny(g)] I'~'"'= 0, (1)

where I
&

" is the ultraviolet asymptotic part of the 1PI renormalized n-particle Green's function, P
and y are finite functions of the renormalized coupling constant g, and p. is the mass parameter of the
theory, being either the renormalized mass or, for massless theories, the Euclidean renormalization
point. Of course, in writing (1) for theories with masses, we are using Weinberg's theorem. 4

Equation (1) provides, among other things, a convenient starting point for the discussion of Bjorken
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scaling in the context of renormalizable quantum field theory. And, indeed, it has recently been shown
that in non-Abelian gauge theories, the origin g=o of the effective coupling constant g defined by

(d/dt)g(t, g) =P(g), g(0, g) =g,

is ultravioletly attractive in the sense of Wilson. Thus, when g is in the corresponding region of at-
traction, these theories are viewed as being asymptotically free and exhibiting Bjorken scaling, with-
in calculable logarithmic corrections, with the following form for the solution of (1):

I „'"'(Xp„.. . , Xp„;g; p, ) = I„I'„z'"'(p„.. . , p„;0; p)x' "(bu) " (3)

where I„ is an unknown constant and a =y, /b, with y, and b, defined by

y=y, g'+0(g'); g'(t, g) =5, 't '+O(t 'lnt), (4)

As is apparent from (1) and (3), this formulation of the solutions of (1) has relied quite crucially on di-
mensional analysis. In this note we should like to question the way in which this analysis has been ef-
fected.

To be specific, we recall the strict Callan-Symanzik equation corresponding to (1):

[pa/sp, +p(g)e/ag —nZ(g)]I' " =ii' (5)

where I' " is the renormalized 1PI n-particle Green's function, and I &~" is the renormalized 1PI n-
particle Green's function with one (generalized) mass insertion' at zero momentum transfer. In pass-
ing to the deep Euclidean region we shall ultimately again use Weinberg's theorem when necessary to
discard I'~'"~ in (5). However, in solving the resulting equation we should like to note that I' " will in
general possess step functions and other singularities associated with the physical thresholds of the
theory. As a result, when we write (in a, theory with only a massless boson field, for example)

as is customarily done in solving (1), the function y, because of these generalized thresholds, may
not satisfy

(QB/Bp+xB/BA)p = 0.

For example, if

where p satisfies (7), then y clearly does not, in general. ' We therefore let Ip denote the terms in y
which violate (7). We may rewrite (5) in the form

(- gs/sg ~p(g)e/kg+4- n[1+y(g)]]r'&"' =ir~'"'- p' "(pa/ay+ma/sx)f(p.

Thus, on using Weinberg's theorem we obtain for the deep Euclidean region

(-»/»+P(g)8/kg+4- [1+ (g)])l'

where we have defined

Rl " = —p' "(pb/Bp, +»/BA. )Iy.

(10)

For massless non-Abelian gauge theories, the solutions of (10) with RI'~"' set equal to zero (the ho-
mogeneous solutions) a.re precisely the results of Ref. 1 as illustrated by (3) above. The complete so-
lution of (10) for any I'~~" ~ is of course just a, constant multiple of the respective homogeneous solu-
tion plus a particular solution of (10). In particular, in the event that the homogeneous solutions a.re
absent because of boundary conditions, I &" is essentially determined by Rl "'.

The form of RI' " is under investigation. In the absence of precise knowledge about its structure,
let us construct an example of the form it may take in order to illustrate its possible effect on 1"~ "'.
We take a theory described by a bare Lagrangian with one massive particle (a fermion, say) and a.
massless boson and let p,

' denote the boson renormalization point. We take the relevant physical
thresholds to generate only step-function discontinuities and 5 functions in 'I'"' (the n-boson 1PI
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Green's function) and, hence, to make the following contribution to 'I'(" )()(p,. ; p; g) (the dependences on
the fermion mass will be suppressed where possible):

I(( = p' "[Z p '(~'(ZP, ,)'/p')()(~'(Z P;„)'-m ')+Z.p'()('(ZP;, )'/p')p'&())'(ZP;, )'-m. ')], (12)

where the p' are presumed to satisfy the analog' of (7). In general, the physical thresholds may gener
ate more general terms in I'("), but, for the purpose of illustration, we shall just consider (12). The
form of RI'("' following from (12) is

(mu' (ZPg()) i
(13)

where p is clearly determined by (p„') and lp„'J. Equation (10) now reads

[- )(8/8)(. +ps/sg+ 4 —n(l +y)]'I"~(" ) = —2p' "Q„p„m„'()()t'(QP, )' m„'—).
Let

(14)

g =2j dx/P(x).

%e introduce p and 0 „by

, i:(Ep,,) )

(, p (Zp() m„'/-(QP; )' = jdr ((„(r)e'"~ (16)

We are assuming we can invert (15). Defining t =in)).', we have, from (14) and (16),
dk dl dr, ~ dr& v(r, ) ~ ~ ~ v(r~ ) (ik)""2

jl j2

——+ +2 ——(1+y) I',8 8 7x

et eg' 2

This last equation has the general solution (see Symanzik')

1
t

i'+' +"('+' ))i' ~ dr, ~ dr &x„.(r, ) ~ ~ g„(r. )(ik)" "
I'~(")=—J dt'gJ' dkdl g + )

-p„
i1ei 2 P&„ j1 j2

&exp j, t'+i r;+l g'+t —t' + ~, , dx ~ 1+ gx —2 +8„ I'~ h, , 18

where h is arbitrary, 8„ is a constant, and 'I'~& h, is a homogeneous solution of (10). Note that in
general h may not be set equal to ~ in (18). We write

h( g'+ t) =g'+ t + 2h, (g'+ t),

where Qp is a function which we may constrain by the requirement that the first term on the right- hand

side of (18), which we denote by 'I'„»("), agrees with the following formal particular integral of (14):

dk dl dr, ~ dr,. 0(r,) ~ ~ .v(r,. )(ik)'& "2exp[j,t + i(gr, + i)g']

(QP; )' " j, !j, ![-j, +i(i+Jr, )+2 —n/2]

~ ~

where (yI"~ ~(")) is defined by

bI (n) jdkdl ( I (n)) j()g'+x2k)~,p 'Y asy, p

'2 j!(-j+il+2 —n/2) ' (20)

(21)

Making a change of variable t' —t = s in (18), we see that as )(. —~,

+h II'~(")-, dkdl Q "~,
,

lim j dsexp[j, +2n —2 —il)s+ —,'n j, dxy(g(s))]2~x'

+ 0()). ) +8„1',v go~, (22)
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where we have used (20). Of course, here we are assuming that the interchanges in the orders of lim-
its and integrations which we have made are legitimate. Clearly, if the boundary conditions which de-
termine B„are such that B„=O, then it is possible that 'I'(")()(P,) behaves like 1/)(,' in the deep Euclid-
ean region, for n ~4.

One of the most pleasing features of this development is the possibility of a natural explanation of
Bjorken scaling. Indeed, consider the familiar Wilson expansion for the product of two electromag-
netic or weak currents at lightlike distances:

~(3/&)~(-S/2) =ZC.(3 "I)o„," „„'"'(0)3"' 3"",

where we suppress alI tensor and quantum-number labels. The Fourier transforms of the functions C„
satisfy an equation analogous to (10) in the deep Euclidean region:

(-)(s/sX+ps/sg- 2 —y„)C„~(A.'q', p;g) =RC„,

where y„ is the anomalous dimension of 0„, and RC„represents the physical thresholds. Assuming
step-function discontinuities and 5 functions in C„due to thresholds (m„}, we have

RC„=—2 p, 'Q &„(")(m„'/p, ')m„'5()(.'q'-m„'),

where we take $„(") to satisfy the analog of (7). From (22) it is clear that, for q'&0,

C„~(A.'q') = const(")(g', p)/A. 'q'+E„C„,& h, + O(A. '),

(24)

(25)

(26)

where

( n ) (i~)~e ' ~' ~'+"
const(")(g', p) =—dkdl Q " . ,

lim f 'dsexp[(j, +1 —i&) s+ 2f.. .«3n(g(~))]j,
(X,$ t t~

with $
") defined by

(n) f df ~
(n }($) el(g'

(2'I)

In (26), E„is a constant and C„,& h, is a homogeneous solution of (24). The homogeneous solutions

C„~h have been discussed in Ref. 1, for example, and are known to give at-least logarithmic devia-
tions from Bjorken scaling in the absence of RC„. Thus, in view of the deep inelastic data we take
such solutions to be absent from (2t). Then, as A. - ~,

C„~(A.'q') —const("' (g', p. ) /A. 'q' = 0(a '), (29)

which is clearly the desired naive free-field-theory scaling result (Bjorken scaling). We emphasize
that const "' is essentially determined by the physical thresholds. Note that our argument need not de-
pend on the sign of P(g)!

Vive should also mention that in the asymptotic timelike q' region, the contribution of RC~" will also
be given by (29). However, in this region, for theories with a. massive Lagrangian, one may not in
general neglect the mass-insertion inhomogeneous term in (5) above. This insertion may in general
generate deviations from the scale-invariant result (29). We conjecture that this is the reason for the
fast onset of scaling in the deep-inelastic scattering region compared with the annihilation region. Qf
course, this is well known.

To conclude, we have argued that, contrary to the approach of Ref. 1, it is possible that it is the
physical thresholds, serving as sources, that generate naive Bjorken scaling in interacting field theo-
ries, the boundary conditions being such as to disallow scale-violating homogeneous solutions to con-
tribute to the appropriate asymptotic physical solutions of the Callan-Symanzik equations in the deep
Euclidean region. Specifically, the step-function discontinuities and 5 functions which are familiar
characteristics of these thresholds can naturally generate Bjorken scaling behavior in the deep-inelas-
tic scattering region. This latter statement is independent of the sign of P(g) in the renormalization-
group equation.
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We report an improved experimental upper limit for D, the triple-correlation coeffi-
cient in polarized-neutron decay. A nonzero value for this coefficient implies a break-
down of T invariance. We find that D= —(1.1 +1.7)»0, consistent with X' invariance.

We are reporting a new measurement of D, the
triple-correlation coefficient' in the P decay of
the polarized free neutron. This coefficient is re-
sponsible for a term in the decay rate equal to

f)P .(p, xp-„)/z, g-„,

where P is the neutron polarization and p„p-„, E„
and E—„are the lepton momenta and energy, re-
spectively. Since this quantity is odd under time
reversal, a measurement of its coefficient D pro-
vides a test of T invariance, provided final-state
interactions and momentum-transfer-dependent
effects can be neglected. In neutron P decay the
only significant final-state interaction is the Cou-
lomb interaction, and the contribution to D from
this interaction vanishes in a pure V -A theory. '

With present measured limits on possible scalar
and tensor terms' in the effective weak Hamilto-
nian, this contribution is at most 20 '. The prin-
cipal momentum-transfer-dependent contribution
to D is due to weak magnetism and has been cal-
culated using the conserved-vector-current hy-
pothesis to be 2xIO '. A measurement of D
therefore provides a test of time-reversal invari-
ance valid at least to the level of 10 '.

The precision of the best previous measure-
ment' of D was severely limited by counting sta-
tistics. A polarized-neutron beam intensity of
3 X10' neutrons/sec yielded a counting rate of
only 1/min, which allowed observation of 10' de-
cay events. The resulting value of D was —0.02
~ 0.02.


