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By using a simple hydrogenic model, we are ab1.e to account for the magnitude, sign,
and tensor character of the exciton contribution to the nonlinear optical susceptibility
in CuC1 and ZnO.

M(Q;+I'Q;+~r'Q;) = e;*E;+z ci;;kE;Ek

I'; =Ne; Q;+X;;E;+Noi;;kE; Q„+d;;kE,Ek, (2)

where Q, &, idr, e*, M, N, and oi;;k are the ex-
citon internal coordinate, damping, transverse
resonant frequency, effective charge, reduced
mass, number density, and transverse "Raman"
coefficient, respectively; X;; and d;;, are the
electronic linear and second-order susceptibili-
ties, respectively. By combining Eqs. (1) and

(2) to second order, the total linear y;;""(~)and
nonlinear susceptibility d;;k"'(m) can be obtained
as
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Haueisen and Mahr, ' and more recently Kra-
mer, Parsons, and Bloembergen, ' have done a
beautiful series of experiments on the excitonic
contribution to the nonlinear optical susceptibili-
ty. By tuning a dye laser (at frequency &u) so
that the generated second harmonic frequency
(2~) swept through the exciton resonances, Hau-
eisen and Mahr' were able to experimentally
determine the magnitude, the sign, and the dis-
persion of the exciton contribution to the second-
order nonlinear optical susceptibility d;;„", in
CuCl and ZnO. Kramer, Parsons, and Bloem-
bergen' also measured the dispersion of the ex-
citon nonlinearity in CuCl using a different tech-
nique, namely resonant third-order mixing. We
suggest below an extremely simple and physical-
ly transparent model which adequately accounts
for the magnitude and sign of the exciton nonlin-
ear polarizability and its close relationship to
the exciton linear polarizability.

However, before describing this model it is
instructive to examine first the equation of mo-
tion of the exciton and the total polarization P;
of the crystal. Following Yablonovitch, Flytz-
anis, and Bloembergen' and Kramer, Parsons,
and Bloembergen' these are given by
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where the second terms in Eqs. (3) and (4) are the
resonant exciton contributions. At high frequen-
cies (v» ik~&) only the nonresonant electronic con-
tribution remains whereas in the low-frequency
limit (ik~ «&d r) the exciton contributions to the
linear X;

" and nonlinear d;z~" susceptibilities
tend toward constant values,
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In the notation of Haueisen and Mahr' these low-
frequency excitonic contributions are denoted as
A and B, i.e.,

B -=47iy; "=4'(e;*)2/Mid '

A -=d;;„'"= ,'Ne;*n;;k—/Midr'. (6)

By fitting the expressions for the frequency-de-
pendent susceptibilities X;;""(&d) and d;»""(&d)
[i.e., Eqs. (3)-(8)] to their resonant second-har-
monic measurements, Haueisen and Mahr' deter-
mined the excitonic linear and nonlinear polariza-
bilities B and A. .

Because of the complexity of CuCl and ZnO,
wave functions of sufficient accuracy are not
available (i.e., CuCl has important d-band con-
tributions and the Zn and 0 atoms have much dif-
ferent covalent radii), and thus a fundamental
microscopic quantum mechanical calculation of
d;,,"would be difficult. We are therefore led to
attempt a much simpler macroscopic approach.

For the basis of our model we assume that the
origin of the exciton nonlinearity, i.e., the ori-
gin of the electric field dependence of the exciton
polarizability, is associated with the dependence
of the core screening on the applied electric
field. That is, an applied optical field changes
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the crystal dielectric constant & (via the elec-
tronic nonlinearity d;») and hence changes the
effective core charge Z«q=Z/e of a hydrogenic-
like exciton (where Z is the unscreened core
charge). The hydrogenic problem can of course
be solved exactly, and it is trivial to show that
the linear polarizability of a hydrogenic system
is proportional to (Z,ff) ', and therefore

i j 811di )I, @l ~ (10)

As Eq. (9) shows, this change b.e of the electron-
ic polarizability will produce a corresponding
change in the exciton polarizability &X" of an
amount

Using the definition of the exciton nonlinearity
d;;„" corresponding to that for the electronic
nonlinearity of Eq. (10), namely

L(4mx; ")=8md;;, '"&, ,

yields our final result, namely

d;,„"=4(4~; "/e)d;». (13)

In the notation of Haueisen and Mahr, ' i.e., Eqs.
(7) and (8), and defining d;;„=d", Eq. (13) can be
written as

(A/d") = 4(B/e).

Our expression for d;;, '" [Eqs. (13) and (14)]
predicts a number of remarkably simple results. 4

First the exciton nonlinearity d;»" is proportion-
al to both the electronic linear X;; and nonlinear

d;,„susceptibilities. Thus, the selection rules
for the allowed d;,,"coefficients are deter-
mined by the requirement that both d;,„and X;;
not vanish. For example, the A. exciton in CdS

is only strong for E perpendicular to the c axis
(i.e. , X»'" &0, X»'" =0). Therefore, d», '" -—0,
d3$ g 0 but dy] 3 4 0 which is, of course, a
strong violation of the Kleinman symmetry rela-

OC Q ~

Physically the reason that X" increases as &' is
that the exciton binding energy E„decreases
with e [E,„o-(Z«f)'~ e '], while the exciton ra-
dius a,„ increases with e [a,„~Z,q, ~ e], both of
which increase the exciton polarizability [x'"
~ (a,„)'/E,„~e']. Thus, since e is a function of
field (via d;») the exciton screening and polariza-
bility are nonlinear. More precisely, an exami-
nation of the d;»E;E, term in Eq. (2) shows that
the change in the electronic dielectric constant
4& caused by an optical field EI, can be written as

tion d;;,"=d», ". Further, for nonzero X;
Eq. (13) implies (a) that the absolute signs of
the excitonic and electronic nonlinearities are
the same, (b) that all the different tensor com-

, ponents of d;;,"have nearly the same propor-
tionality constant, i.e., the ratio d;» "/d;;„ is
almost independent of the tensor indices ijk
(since x; " is quite isotropic for zinc-blende
and wurtzite crystals), and (c) that the ratio of
the fractional contribution of the exciton nonlin-
ear polarizability [i.e., d;&„'"/d;q„=A—/d.™]to the
fractional contribution of the exciton linear po-
larizability [i.e., 4~; "/& =B/&] is—independent
of any crystal parameters and is, in fact, a pure
constant, i.e., (d;»'"/d;;„)/(4~; "/&)=+4, as
shown by Eqs. (13) and (14).

We can now compare the experimental values
of Haueisen and Mahr' with our theoretical pre-
dictions based on Eqs. (13) and (14), for the var-
ious components d;;,"for both CuC1 and ZnO.
In this connection it is important to note that the
crystal dielectric constant E appearing in Eqs.
(13) and (14) (and elsewhere) is that appropriate
to the particular exciton of interest for which the
linear and nonlinear susceptibilities Xi;" and
d;»" have been determined. The reason for this
is that it is well known that the appropriate ef-
fective dielectric screening is a function of the
exciton radius, "i.e., e =&(r). This is true
since for large-orbit excitons the lattice motion
can follow the slowly moving exciton and hence
the relevant dielectric constant is the static one

However, for small-radius excitons the ex-
citon motion is too rapid for lattice screening to
be effective and hence the optical-frequency di-
electric constant & is appropriate. For excitons
of intermediate radius, the effective dielectric
screening constant varies smoothly between
these limits.

Table I shows that the magnitude and sign of
the experimental values of d;,,'"/d;» are in good
agreement with the predicted value of I67TX;;"/

It is especially noteworthy that the experi-
mental values of d;,„'"/d;,, are the same for both
the d333 and d», " exciton resonances as pre-
dicted by Eqs. (13) and (14), even though the non-
linear coefficients d333 and. d3$$ differ not
only in magnitude by a factor of 2, but also in
sign (i.e., ds»'"/d», '" =-2). Further, it is
worth mentioning that this good agreement is ob-
tained in spite of the complexity of the electronic
nonlinearity in CuCl and ZnO. That is, CuCl and
ZnQ are among the few negative nonlinear sus-
ceptibilities [i.e., d», (ZnO) &0, d», (CuC1) &0] in
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TABLE I. The experimental measurements of Haueisen and Mahr (Ref. 1) for
the ratio of the excitonic to electronic second-order nonlinear susceptibilities
(d;;~ "/d;, ~) are compared with our theory (Eqs. (13) and (14}], and are seen to
be in good agreement. The experimental absolute signs of d;;& are shown (note
especially d333 and dms $ of Zno) to indicate that the ratio d;,~ /d&, „is independent
of these signs as predicted by Eq. (13).
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+5 9
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' Ref. 8.
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the class of tetrahedral semiconductors; most
of the other compounds such as GaAs are sim-
pler and Positive. " This unusual behavior for
these two crystals arises from unrelated com-
plications. In CuC1 there is a significant d-band
contribution from the noble-metal d electrons, "
whereas in Zno it is the unequal covalent radii
of the Zn and 0 atoms which produce the nega-
tive nonlinearity. " Therefore, it would certainly
be of great interest to do this type of exciton-
resonance experiment on a simpler crystal such
as GaAs which has an extremely well character-
ized' and closely hydrogenic exciton, and for
which d», 0. To encourage such measurements
we have listed our theoretical predictions for
Gahs as well as for other common zinc-blende
and wurtzite semiconductors in Table I. The
predicted large differences between the III-V,
II-VI, and I-VII semiconductors provide good
opportunities to test this theory.

In conclusion, by the use of an extremely sim-
ple physically transparent model [i.e., Eq. (9)I

we have been able to adequately account for the
magnitude, sign, and tensor character of the ex-
citon contribution d;;, '" to the second-order non-
linear optical susceptibility in CuC1 and ZnO.
We have also predicted d;»" for a variety of
common III-V, II-VI, and I-VG zinc-blende and
wurtzite semiconductor s.
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A new bond-charge model for phonons in semiconductors of diamond structure is pre-
sented. I show that the flattening of the transverse acoustic phonon branches in these
materials can be understood by interactions involving the bond charges, when these
move adiabatically. The phonon spectrum of Ge is calculated using only four parameters,
all of which are physically meaningful, and very good agreement with experimental val-
ues is obtained.

The phonon dispersion relations of all semicon-
ductors with diamond or sphalerite structure' ex-
hibit one characteristic feature, from which only
diamond itself is excepted: The transverse acous-
tic (TA) phonon branches have very low frequen-
cies and are very flat away from the zone center,
although the corresponding shear moduli have
rather high values. In the following, .I show that
this can be understood by interactions involving
the bond charges (BC's), if these are allowed to
move adiabatically. My model also enables us to
elucidate the differences in the nature of the bind-

ing forces in the group IV materials.
Based on Phillips's bond-charge model' for co-

valent crystals, Martin' has used a dielectric
screening model to calculate the phonon spectrum
of Si. He assumed that the bare-ion-core poten-
tials are screened in a nearly free-electron-like
manner; i.e., by the diagonal elements of the in-
verse dielectric function e '(q+G, q+G'). This
metallike binding gives rise to short-range cen-
tral forces between the ions, which die out rapid-
ly beyond nearest neighbors. The effect of the
off-diagonal elements of e ' is described by Cou-
lombic interactions involving the BC's. These
forces represent the covalent character of the

binding; they lead to effective noncentral forces
between the ions, which produce the stability of
the diamond structure against shear. The specif-
ic assumption was made that the BC's were fixed
midway between the ions, even when the latter
are displaced. Martin obtained fair agreement
with experimental dispersion curves, except that
the flattening of the TA phonons could not be re-
produced.

In 1959, Cochran4 pointed out that this flatten-
ing of TA branches, which in a Born and von Kar-
man model requires very long-range force con-
stants, ' is in fact due to mainly short-range ion-
electron and electron-electron interactions.
Cochran's shell model (SM), however, has many
drawbacks. The noncentral two-body forces,
which are crucial for the stability against shear,
are not adequately understood. ' Further, the
electrons in a bond are shared by two atoms and
it is unphysical to divide them between the two. '
Finally, it turned out to be impossible to extend
the SM to III-V compounds without introducing
many new parameters, although the phonon spec-
tra are very similar. '

The starting point of my work is the bond-
charge model; i.e., I describe the effect of the


