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Contribution to Sideband Instability Theory
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The O' Neil trapping regime is known to take place only after a finite damping of the
main wave. As a consequence of that finite damping, one obtains a beam-type distribu-
tion function for the detrapped particles. By including in the stability analysis this de-
tailed distribution function, we give a new interpretation of the sideband generation.

The original observations by %harton, Malm-
berg, and O' Neil' that satellite frequencies of a
large -amplitude collisionless electron plasma
wave are unstable were interpreted in terms of
trapped-electron instability. " From that time,
numerical simulations' and laboratory experi-
ments' ' have made more precise the features of
this instability. This instability is very sensitive
to the time behavior of the main wave. It has
been shown' that several regimes are possible
according to the values of ly„/cu„l, where yL is
the Landau damping rate and co~, the initial elec-
tron bounce frequency: u&, =tt,{le!4,/m, j'~'.
Firstly, if ly„/~„l&1, the main wave is Landau
damped. Secondly, if ly~/&'„l«1, the main-wave
amplitude oscillates around a constant mean val-
ue (O'Neil's regime'). Lastly, if 0.2 & ly„/&u, I

«0.7, the potential-wave amplitude decreases
first and oscillates after a while, whereas one or
three sidebands grow with frequencies approxi-
mately given by ~ -kV+ =+~„,2~,, Here, Vc,

is the main-wave phase velocity. Measurements
of the sideband growth rate"' show that, depen-
ing on the initial-wave potential, one obtains y~
~~„"with 1 n «2.4. Moreover, after the ini-
tial main-wave damping, the electron distribution
function exhibits an accumulation of untrapped
particles at the edge of the well. '

These experimental features suggest the follow-
ing mechanism to explain the sideband instability.
For simplicity, we restrict ourselves to the case
p = V@,+~,/k, V~,

'
& 1 (Vr, is the electron thermal

velocity), which enables us to neglect the non-
linear frequency shift. " Let us-assume an ini-
tially Maxwell. ian plasma where a monochromatic
wave is injected at t=0. During the first-half
bounce period, trapped electrons with velocities
V & V~, are accelerated by the wave electric field,
whereas electrons with V & Vc,, are decelerated.
If the damping rate is small compared to the
bounce time, the net energy exchange between
wave and particles tends to be null. Conversely,
if these two scales are comparable, many of the

accelerated particles are not reflected during the
second-half bounce period, and they become a
beam of detrapped particles. On the other hand,
reflected particles lose kinetic energy to the
wave, inducing a new rise of the main-wave am-
plitude. A lower -amplitude oscillatory regime
takes place when the slope of the distribution
function of the remaining trapped particles is
small enough. Then the main effect of the wave
damping is to give rise to a beam of detrapped
particles, which we show to be responsible for
the sideband instability.

Before proceeding with the stability analysis,
we calculate the distribution function at the end
of the damping stage. In order to be able to solve
the particle equation of motion in the wave frame,

we choose a particular time dependence for 4(t):
1 en(t) = 2 e = const,

with

Q(t) =k, [lel4(t)/m, j'".
Since in most experiments the oscillatory regime
is reached after half a mean bounce period, we
use Eq. (2) for 0 & t &7/2, where T/2 is defined by
w = f '~'A(t) d t. For t & T/2, we assume a constant
amplitude, 4, = 4(T/2) We have .to assume l e I

&1, otherwise the wave mill be completely damped
before one trapping oscillation could take place.
On the other hand, I e I must not be too small,
otherwise the time variation of the potential is
adiabatic, and only a negligible number of parti-
cles are detrapped. The parameter e will be de-
termined from the energy balance.

First we consider Eq. (1) for t & 7/2. Setting
y = f, 'Q(t) dt, we have to solve

d'k, x dk, x
2 + 2E + slHkox = 0.
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This is the equation of a pendulum with a negative
friction term. It has been solved by Bogolioubov
and Mitropolski. " Expanding sinkpx, one shows
that the solution which is obtained when retaining
only the linear terms describes the motion of
95% of the initially trapped particles within an
accuracy of better than 5Q. Thus, in the follow-
ing we use this approximation. If we set a'
= 2lel4(t)/[W+ lelC(t}], where 8' is the particle
energy, we deduce, from Eq. (3), K,'=z'(T/2)
= 2(0}exp(2~w). For a stationary potential, one
checks easily that 2 &1 for untrapped particles
and a' &1 for trapped particles. Here, because
of the finite potential variation, we must distin-
guish three kinds of trajectories in the phase
plane (x, V}: (1) Particles with ~,' &e""are al-
ways untrapped. For these particles we neglect
the modulation of their velocity v in the wave
frame. Thus their distribution function remains
Maxwellian. (2) Particles with ~,' & 1 remain
trapped, and v(V/2) = -v(t=0)e". (3) Particles
with g '~& K,

' &1 are trapped at t=0, and untrapped
at t= ~/2. Depending on their initial energy,
these particles can suffer one or no reflection.
For initially trapped particles, those having e'"
& ~,' &8" are not reflected, whereas one reflec-
tion occurs for those with e'" «,' &1. Then
v(T/2) = —v(t = 0)e" if 1 & ~,' & e'", and v(r/2) = v(t
= 0)e" if e"& ~,'&e'". Consequently the main
wave energy absorption during the first-half
bounce period is due to particles with Ky &e",
the distribution function of which exhibits an in-
verted slope at t= 7/2, as shown on Fig. 1(a).
From the energy balance equation we evaluate the
amplitude characteristic scale of variation,
e = y„/4(ub,

The time development of the sideband instabil-
ity can be studied when the oscillatory regime is
established (i.e., for t& 7./2). We use the same
methods as Bud'ko, Karpman, and Shkylar. ' As
in Ref. 3, we find that for p &I, the main contri-
bution to the growth rate comes from the ergodic
terms of the distribution function. But as a re-
sult of the detrapping process we have previously
described, we get the ergodic distribution func-
tion shown on Fig. 1(b). As for 1 & a' &e", the
sign of the ~-dependent term is opposite to the
one obtained in Ref. 3, and the instability soon
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FIG. 1. Electron distribution in the wave frame as a
function of ~ (x having the sign of v). (a) At t =7/2
the distribution exhibits an inverted slope compared to
the initially Maxwellian function. (b) At t = ~, the elec-
trons exhibit a beam-type distribution function.

occurs even for p «1. Nevertheless, provided
that the contribution of ergodic terms dominates,
it is convenient to work in the asymptotic time
regime. As long as 4, /4, =exp(wyt/tu„) is not
too small, the energy of detrapped particles is
sharply peaked [(4,/4, )"4 & 2 & 1]. Then their
distribution function may be regarded as identical
to that of a beam and the hole from which the
beam came,

where X is the complete elliptic integral and 2n~
is the number of detrapped particles,

sg) 2(spy~ g pL 4p
(5)

Here v~' = 4wn, e'/m„~, is the main wave fre-
quency, and 1(D is given by the balance equation
which reads, with our approximation, tz~ IK(z~)
—-'we""( ew) '"

Because of the spatial periodicity in the wave
frame, all the Fourier components of the per-
turbed electric field E{k+nk,) are coupled togeth-
er through the periodic modulation of the suscep-
tibility. " In the laboratory frame the equation
for E(k, &u) has the form

Q, [b(k+ sk„u&+ s&u, )6(l, s)+ )(, ,]E(k+ sk„&u+ sv, ) = 0,

where the fluid dispersion relation b(k, &u) = 1 —&ub'/(~' —3k'Vr') describes the initially untrapped parti-
cles, for which we kept only zeroth order terms in C,." The ergodic trapped-particle distribution
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function is independent of z to the lowest order in p, . Then the only contribution to the susceptibility
X, , comes from detrapped particles. We retain the most important components of the field, E(k, 01)

and E(k —2k„v —2&u0). Limiting ourselves to terms up to second order in q~ = exp[ —1/K'(K J/K(K J]
the susceptibilities y, , read

2I~'1-K,2 ") ' [(~-kV )'-k, 'U']' [(~-kV, )2-4k 2U2]"

m'E &u~2k0U(01 - k VC,0) 4q ~'
~0, 2 ~-2,0 2lf3(1 K 2) [(+ kV )2 k 2U2]2 s

c'o

where 0/~ is the beam plasma frequency, U = n~„/I K~ IX(K~)k0 is the averaged velocity of the beam,
and E and E are complete elliptic integra?s. Setting co= ~p+ 6~ and k =k, + 6k, the dispersion equation
is solved to the first order in q~. The maximum growth rate is obtained for 5k =ak0U(vo, /Svr'). In
the laboratory frame

&3 E1T' e'" t' y1,
yob= 2 "b. 8' 1 D bp p

U EK 3e -3fw+ 2 ( 2 tl/3

1 —V '/SV' ' 82(1 —K 2)(u

Retaining now the second-order terms in qD, we find that sidebands with frequencies (o' cop 6 2QQ

are destabilized. Since y2& =(2q~')'/3y„„ they will be observed only if K~ is not too far from unity.
Let us now take into account the sideband amplitude coupling terms. Solving the set of equations (6),
E(k, &u) and E(k —2k0, 01 —2~0) are coupled through the second-order terms in q~:

E(&u0 + Q„k) = (-~ /2[(5$)' +y0
~

22]'/' +68)E(k —2k„a Q, —&u0),

where

6h = [(5(u)' —3(5k)2vr, '](ub '.
Then, in the laboratory frame, the red satellite
has larger amplitude than the violet one, if Vc,'
&3V~, ', which is the usual experimental case.
The ratio of E(0/0 —Qb, k, ) to E(0/0+ Qb, k, ) de-
pends on qD through ~,. For very small. values
of q~, ly0, I &1581 and E(u&0+ Q,) «E(cu, —Q,);
while for qD&1, but not too small, leap 2I~ I'Gal

and E(cv0 —Q,) -E(&d0+ Q,).
Collecting the previous results, three side-

bands should appear if y„/&ub, is small (K~' e 1).
Conversely, if y„/rub is large (K~' «1), only
one sideband should appear. In this case the
beam is wider, thus explaining the broadening of
the spectra when only one sideband is observed. '
This regime is rather limited in y1/111„, at least
if we maintain p. «1. If p. -1, no.nlocal damping
effects and nonlinear frequency shift will occur. '
Then there should be one enhanced beam with

KD « I, inducing a large-amplitude unique side-
band wave. This regime is the natural extension
of the regime p, &I, aD'&1, where only one side-
band was found. Furthermore, when p. -I, one
can expect that the sideband growth rate will not
be proportional to 4,'".'
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