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By the introduction of a chemical potential for an absolutely conserved fermion quantum
number, we determine the onset of a phase transition in a general renormalizable, fi-
nite-temperature field theory with spontaneously broken symmetries. We also briefly
investigate the possible physical existence of such a phase transition in black holes and
in the early universe.

Recent investigations" on phase -transition
phenomena in a renormalizable quantum field
theory indicate that finite-temperature effects
can restore a symmetry which is broken at zero
temperature. This occurs through the generation
of a temperature-dependent scalar boson mass
(or inverse correlation length) which, for suffi-
ciently high temperatures, may vanish. The ques-
tion we address is whether the same mechanism
is operative for a large chemical potential due to
an absolutely conserved fermion quantum number.
Alternatively expressed, can a large fermion
number density effect a phase transition'?

In the framework of a weakly interacting, re-
normalizable field theory characterized by a cou-
pling constant e «1, the effective boson mass
can only vanish if powers of the temperature 8 or
chemical potential p, can compensate for powers
of the coupling e. Weinberg has shown' that when

P = y. /8 «1, the leading terms in any graph for e
small and 8 large are those in which all loops be-
yond the lowest order are quadratically divergent.
The finite part of such a loop contributes a factor
proportional to e'8', so that the critical tempera-
ture is attained when e'g' is of the order of the
square of the renormalized mass at zero temper-
ature, 5RR', i.e., 8„;,=%„/e. ln typical gauge
theories of the weak and electromagnetic interac-
tions, ' SP /eRis of the order of GF

'~ so that 8 „;,
= 300 GeV=10"'K.

We are particularly interested in isolating the
leading terms to any graph for e small and p
],arge, and p, »1. Considering a loop expansion"
we have a factor of e'~ in a graph with L loops.
To determine the powers of p, contributed by each
loop, we concentrate on a single loop with super-
ficial degree of divergence D. We rescale by 0

all dimensional factors in the single-loop integra-
tion so that the whole loop takes the form

8 I(P,„,/8, (o,x,/8, mi„, /8, p.),

where p,„, and &u,„, represent the set of external

momenta and energies, and I;„,represents the
internal masses. Now the single loop integration
will contain' a Fermi distribution function in the
integrand of the form

g 1 1
g

& &8'-i)le+1 &(&+i )/~+1 (2)

8 f(P,„,/8, ~,„,/8, m;„,/8, P)
OD—D D

Since we are considering renormalizable field
theories, the largest value of D that concerns us
is D = 2. In addition, all quadratic divergences
can be eliminated by a renormalization of the
boson self-mass (with the assumption that there
are no gauge-invariant scalar fields) ~ Thus, the
effective boson self-mass will contain a term of
the form e'p, ', and we anticipate a phase transi-
tion when p, „;,=% /e.RAgain, in typical gauge
theories of the weak and electromagnetic interac-
tions' this transition would occur for p. „«=300
QeV. Dimensionally, for p, »1, we expect p.

-n', where n is the fermion number density, so
that the critical fermion number density would be
of the order n„,, -1 40s/mc'.

These anticipated results can be explicitly ver-
ified by calculating the leading (in p. ) one-loop
contributions to the boson self-mass. We con-
sider a general renormalizable Lagrangian'
which possesses a gauge invariance with respect

where h = (p'+m')'~' and m is an eigenvalue of the
the fermion mass matrix. Since p, »1, the sec-
ond term in (2) will act as an exponentially damp-
ing factor in the loop momentum p, while the
first term will begin providing an exponential fall-
off in p when h a p, , i.e., above the Fermi energy.
We are primarily interested in p, large (=300
GeV) and thus much greater than m, so that the
integral in (1) is effectively cut off when p —

p, .
Thus

324



V OLUME 33, NUMBER 5 PHYSICAL- REVIEW LETTERS 29 JUx.v 1974

to some compact semisimple Lie group G:

2= —4F q„F "' —2(Dqy), (D"y), —.gy"Dp (
—~,g —P(y) —

(C) I;gy, (4)

where E „,is the gauge-covariant curl of a set
of Hermitian gauge fields, (D„y); is the gauge-co-
variant derivative of a multiplet of real, spin-0
fields, D&g is the gauge-covariant derivative of a
multiplet of spin- —, fields, m0 is the Hermitian
and gauge-preserving bare fermion mass matrix,
P(y) is a real fourth-order gauge-invariant poly-
nomial in y, and I', i,s the set of Hermitian and
gauge-covariant Yukawa coupling matrices. The
gauge invariance of the Lagrangian is broken by
allowing the scalar fields y,- to develop spontan-
eously a nonvanishing vacuum expectation value.

We consider this Lagrangian at finite tempera-
ture and incorporate a fermion chemical potential
as a Lagrange multiplier of the number density

g given by

n=A=Wr 4.

Thus, the chemical potential p. will alter the
fourth component of the fermion propagator,
which, at finite temperature, implies the replace-
ment of the discrete energy 8„=(2n+1)w6, n an
integer, by h„—ip. ,

As previously mentioned, the leading chemical-
potential effects, as well as all quadratic diver-
gences, can be absorbed into a redefinition of the
quadratic terms in the potential P(y) by defining
an effective potential'

1 y'p 1
I), (B, 0) ——

2 (2 ), ()
F —,V),- (10)

where the Fermi function F is defined in (2). In
the limiting case of n large and p. » 1, we have

g2 oo 1 1

0

we note that the contributions to the quadratic
divergences in any renormalizable theory come
from tadpoles T, and the boson self-energy D;,
Furthermore, Q;, (p, ) is determined by requiring
that the counterterms provided by (7) cancel
these quadratic divergences as well as those
terms proportional to e'p, '. It is the latter terms
that we wish to isolate, since the former terms
can be absorbed into a temperature- and chem-
ical-potential-independent renormalized scalar
mass SIR. But the chemical potential enters the
calculation only through the fermion propagators.
Thus, the graphs of interest are the fermion-
loop tadpole (Fig. 1) and the fermion-loop con-
tributions to the boson self-energy (Fig. 2).

The fermion-loop tadpole at finite temperature
and chemical potential is given by

T,& = i(2w) Tr(I;.y41;y jX;I„(8,p),

where
+ f3p ]

E( i P)~E'(2 )3 $2+ (g
' )2

and 8'=p'+m'. Performing the summation over
n and renormalizing at 8 = p, = Q, we find

P, fg(y) =P(y)+ zQ;g(u)V;y;

and by adding a compensating counterterm to the
Lagrangian,

This integral can be done exactly to yield

I, (e, p. )= ——,', e'll+ (3/~')P'].

But the counterterm (7) contributes a term

(12)

~&'= 2Q;;(u)v;y, ' (7) 5 T;~= i(27))'Q„(p, )X,, (13)

Here, Q, ,(p, ) is some chemical-potential-depen-
dent, quadratically divergent matrix which con-
tributes to the formation of an effective scalar
boson mass. After shifting the scalar fields by
their zeroth-order vacuum expectation value X,

Q;, '"(p)= (p ./Sg ).TrII'D 41 p j. (14)

Thus, the effective scalar boson mass matrix is

so that we have for the finite part of Q;,.(p, ) in the
limit p, »1

FIG. 1. Fermion-loop tadpole. Dashed line, scalar;
solid line, spinor.

FIG. 2. Fermion-loop contributions to the boson self-
energy.
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given by

where the chemical potential provides a positive-
definite contribution. The vanishing of %'(p) de-
termines ILL„,, in the one-loop approximation. In
the case of a spontaneously broken symmetry

where SR„'&0, we have p„;,-K~/s since the
Yukawa coupling matrices are each proportional
to e.

This result can be checked by noting that the
counterterms provided by (7) also cancel the
leading fermion-loop contributions to the scalar
boson self-energy (see Fig. 2) given by

+OO 3 +OO 3

II; ~ ie Q — -), Tr{I',(iy p" +m) 'I, (iy„p +m) )+if »M»,
' Q — -)3- Tr(I;(iy+ "+m) 'j,

where

(16)

e v's e v'p (( =z 8 (I('s 8 vg s pa (( =)(

Isolating the quadratically divergent part of (16)
and the leading terms in p, , we find

11;, = —Q;,.(g)+f;,„M„'Q, (p)& (17)

n = (1/V) fd'xq (x). (18)

Using (5) and the ((L-dependent free-fermion prop-
agator at finite temperature, we have for the re-
normalized (at e =

p, =0) number density8', 1 1
xx(X, X)= —, dxx' -, —„-- - —;-„„--), (((()

0

where the fermion mass is again negligible com-
pared to p, . This integral can be done exactly
and we find

n (e, )U. )= (e'/3m')(p, '+ p'((L).

Inverting (20) yields approximately

(20)

(21)

thus confirming our earlier dimensional argu-
ment leading to the estimate of the critical fer-
mion number density of 10"/cm'. Densities of
this magnitude or greater are considered in the
evolution of black holes' and of the universe. '

A gravitationally collapsing star with mass M
and original radius R0 will theoretically reach a
point of infinite density in a finite proper time
given by'

r = w(R /o8M)'~, (22)

i.e. , the time for total collapse as measured by

The first term is canceled directly by the counter-
term in (7), while the second term is canceled by
a tadpole produced by the counterterm.

We can equivalently express our result in terms
of a critical number density n„;„where n is
the number of fermions minus the number of anti-
fermions in a unit volume V:

a clock on the surface of the collapsing star de-
pends only on the initial density. Since a typical
stellar mass is =10"g (which is of the order of
the Chandrasekhar and Oppenheimer-Volkoff lim-
its), ' there may be up to 10"baryons. Then, the
critical density would occur when the radius was
= 10' cm and when the proper time was given es-
sentially by (22).

It has been noted' that a phase transition which
produces massless vector particles may lead to
anomalously great repulsive forces between the
particles of the system. Whether this force i.s
sufficient to reverse the collapse of the star has
yet to be determined.

Similar considerations can be applied to the
universe as a whole, extrapolating backwards in
time and assuming the standard big-bang model
with elementary particles. " If we take the pres-
ent radius of the universe as 10"light years and
the density as 10 "g/cm', we find a maximum
number of baryons of 10". This would lead to a
phase transition when the radius of the universe
was approximately 10"cm.

However, from the observed cosmic-radiation
temperature and mass density, we know that the
dimensionless chemical potential is small today,
j.e., p, —10 -10 9. ' In addi. tjon, when p, &&1,

p c(-1/o, where o is the dimensionless specific
entropy per baryon. Now if we presume an adia-
batic expansion of the universe, cr is constant, so
that p, would never grow large enough to effect a
phase transition. The adiabatic assumption,
though, leaves unexplained both the origin of the
large specific entropy and the origin of the gal-
axies. An attractive solution" "which could
solve these problems simultaneously asserts that
the viscous dissipation of anisotropies and pos-
sible inhomogeneities would serve to generate
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entropy but preserve "small" mass fluctuations
of galactic size. Such a solution would necessar-
ily imply a growth of the specific entropy in time
or a corresponding increase of p. extrapolated
back in time, with p. »1 allowed in principle.

We thank Steve Weinberg who generously pro-
vided his time and an early version of his paper
"Gauge and Global Symmetries at High Tempera-
ture. " We are also grateful for frequent valuable
discussions with Jurg Frohlich.

*Work supported in part by the National Science Foun-
dation under Grant No. GP-40897X.

D. A. Kirzhnits aud A. D. Linde, Phys. Lett. 42B,
471 (1972); D. A. Kirzhnits, Pis'ma Zh. Eksp. Teor
Fiz. 15, 745 (1972) [JETP Lett. 15, 529 (1972)].

S. Weinberg, "Gauge and Global Symmetries at High
Temperature" (to be published).

S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967);
A. Salam, in Elementary Panicle Physics, edited by
N. Svartholm (Almquist and Wiksells, Stockholm, Swe-
den, 1968), p. 867.

4S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888
(197').

'A. L. Fetter and J. D. Walecka, Quantum Theory of
j//Iany-Panicle Systems (McGraw-Hill, New York,
1971), Chap. 7.

6S. Weinberg, Phys. Bev. D 7, 1887 (1978).
C. W. Misner, K. S. Thorne, and J. A. Wheeler,

Qyevitation (Freeman, San Francisco, 1978).
E. B.Harrison, Annu. Rev. Astron. Astrophys. 2,

155 (1978).
98. Weinberg, Gravitation and Cosmology: Principles

and Applications of the Geneml Theogy of Relativity
(Wiley, New York, 1972).

oIn the composite-particle model [see R. Hagedorn,
Nuovo Cimento, Suppl. 8, 147 (1965); S. Fubini and
G. Veneziano, Nuovo Cimento 64A, 811 (1969)], the
chemical potential grows without bound while there is
a maximum temperature, so that the condition p, » 1 is
attained. However, because of the richness of fermion
states, the typical thermodynamic quantities (e.g. ,
pressure, density, and number density) grow exponen-
tially with the chemical potential [see K. Huang and
S. Weinberg, Phys. Rev. Lett. 25, 895 (1970)], so that
the validity of a one-loop approximation would be ques-
tionable.

C. W, Misner, Astrophys. J. 151, 431 (1968).
S. Weinberg, Astrophys. J. 168, 175 (1971).

~SR. Matzner and C. W. Misner, Astrophys. J. 171,
415 (1972).

Inclusive 7l Production in pp Collisions at 50—400 GeV/c*

D. C. Carey, J. R. Johnson, R. Kammerud, M. Peters, p D. J. Ritchie, A. Roberts,
J. R. Sauer, R. Shafer, D. Theriot, and J. K. Walker
¹tional Accelemtog Laboratory, Batavia, illinois 605l 0

and

F. E. Taylor
Physics Department, No&hem Illinois University, DeEalb, illinois 60ll5

(Received 15 May 1974)

We have measured the single-photon cross section in the reaction p+p-p+ anything
for incident proton momenta from 50 to 400 GeV/c and lab angles of 80, 100, and 120
mrad. It is shown that in the range P~=0.3 to 4.3 GeV/c, the derived ~ invariant cross
section can be factorized into a product of two functions, one in p~ and the other in a
new scaling variable xs=P*/P~~*, where p* is the total c.m. momentum of the z~.

The study of the production of pions with large
transverse momentum p~ in proton-proton colli-
sions is expected to give insight into the short-
distance structure of the proton. ' ' Great inter-
est in this field has been stimulated by the exper-
imental results obtained at the CERN intersect-
ing storage rings and at the National Acceler-
ator Laboratory (NAL). 7'8 Busser et al. 4 at the
intersecting storage rings were the first to show
that near 90' in the PP c.m. system, the large-P ~

data were consistent with a scaling behavior with
respect to the variable x~=2P~/v"s. On the other
hand, it has been known for several years that
the small-P~ single-pion inclusive data, exhibit
scaling with respect to the variable x~, = 2p~, */fs
at all c.m. angles. In this experiment, data have
been obtained on single-w inclusive spectra from
40 to 110' in the pp c.m. system and for 0.3 ~ p~
~ 4.3 GeV/'c. It has been found that the cross sec-
tions scale when the "radial" variable x„=p*/


