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channeled H,
' ions through gold foils show that a

significant fraction emerges from the foils as
molecules. O'H pairs locked in spatial correla-
tion may contribute significantly to this transmis-
sion probability. It would be interesting to ascer-
tain the importance of wake-riding states of pro-
tons behind heavier ions, for example, in trans-
mission experiments with incident fast molecules
such as IiH, CH, OH, or hydrogen halides.
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The resistivity of one-dimensional metals is calculated for two models in which im-
purity scattering is the only mechanism for dissipating momentum. In the first model,
impurity scattering is added to the Frohlich Hamiltonian. In the fl.uctuation regime
above an incommensurate Peierls transition it is found that the resistivity is enhanced.
For a general two-body interaction Hamiltonian it is found that charge-density-wave
fluctuations predominate over Cooper-pair Quctuations leading to enhanced resistivity.

There has been much speculation recently that
enhanced conductivity can be obtained from Quctu-
ation contributions in one-dimensional metals. ' I
A general feature of one-dimensional metals is
their inherent instability towards the formation
of a charge-density wave with a period of twice
the Fermi wave vector (2kF).' " In this Letter
we examine two models for which impurity scat-
tering is the only dissipative mechanism for mo-
mentum and find that the density Quctuations lead
to an enhanced resistivity„not conductivity. One

is the Peierls instability arising from the elec-
tron-phonon coupling. The second problem is
that of a one-dimensional metal with a general
two-body Hamiltonian. In this case even though
attractive interactions cause a divergence in the
Cooper-pair response function, the scattering
time is dominated by the divergence in the elec-
tronic polarizability at 2kF, and the Quctuation
contribution leads to a divergence in the resistiv-
ity.

We consider first the Peierls instability with a
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Hamiltonian of the form

H = Ho+ H1+H2,

Po =Q»~E'(k)Q» ~ 0» ~~

~, =L, "' P Ue~[f(k -k')Z, ]a„,.'a. ..
kk'aq

e, = Z, "'Pg[a„„.'a„.(b,'+ b, )+H.c.]

(2)

(2)

+Q(u, b,t b, .

The first term is the kinetic energy of the elec-
trons and ak ~ is an electron creation operator.
The third term is the Frohlich electron-phonon
coupling term and b,~ is a phonon creation opera-
tor. We have included in the Hamiltonian a term
representing the impurity scattering with an im-
purity potential U.

A calculation of the conductivity is meaningful
only in the presence of impurity or umklapp pho-
non scattering. Ohterwise, as Peierls has point-
ed out, ' there is perfect phonon drag and no re-
laxation of the current. We will consider an in-
commensurate model with the main relaxation
arising from impurity scattering. In a strongly
commensurate case, such as a half-filled band,
Patton and Sham" have shown that the fluctuation
contributions enhance the resistivity. In discuss-
ing the conductivity in one-dimensional metals
it is more convenient to use the momentum-re-
laxation-rate formulation rather than the current-
current response-function formulation. A con-
venient formulation of the former has been given
recently by Mori~ and by Gotze and WolQe' and
used by Luther and Peschel' in the context of
impurity scattering in the Tomonaga model. How-
ever, it requires some care to apply this formu-
la to the electron-phonon system where the above-
mentioned phonon drag is essential. First we
note that within the Born approximation for im-
purity scattering the relaxation rate ~ ' of the to-
tal momentum P, defined by

current is the same as that of the total momentum
P, since within the Hamiltonian (1) phonons can-
not dissipate their momentum without the scatter-
ing of electrons.

The calculation of ~ ' reduces then to the cal-
culation of ImN(2kp, ~). If we assume a finite
value for the transition temperature T p, then an
expansion of ImN(2k„, ~) in terms of e [= (T —T p)/
Tp] leads to a consideration of the diagram in
Fig. 1(b) as the leading correction to the lowest-
order diagram in Fig. 1(a), where the wavy line
represents a fluctuation propagator of the form

(q ~)= ~0 (&+~II"F qll IT +&Jeq'JIT . —&&&/

8T). Here q is the deviation from 2kp, vp is the
Fermi velocity, and c)) and c~ are numerical con-
stants. We have used a more general form for
D ' than that of Ref. 11 in order to include pos-
sible phonon dispersion in the directions perpen-
dicular to the chains. If we denote the zone-
boundary value of q~ by q, the condition to be
met in the three-dimensional limit is c~~p'q„'/T'
&~, and in this limit the leading correction to the
rate is

w in'(E „/T)
S2e "*ee'"e ' '/T*) '

C)) C VF g

where w, '=2CU'VF ' is the normal momentum
relaxation rate. In the opposite limit the behav-
ior is one-dimensional and

m In'(Z, /T)
+0 ~ 6 1/2 S/2 ~16c ))

In these formulas E F is the electronic energy cut-
off. In both cases an enhancement of the momen-
tum relaxation rate is obtained. In the one-dimen-
sional case, the expression is only the leading
order in an uncontrolled expansion, e.g. , Fig.
1(c) contributes a term - e '" to the expansion.

P=g» ka» ta& +g qb tb

can be expanded in powers of c as

1 C 2 86 86
7 '= —U'P ——,ImN(k —k', &u),

Bk ~k'

(a)

——X—

(b)

where c is the concentration of impurities. N(q,
ur) is the density-density response function eval-
uated for H, +H„Eqs. (2) and (4). In the steady
state (sr =0) under a weak static electric field,
which is the usual circumstance of measuring
conductivity, the relaxation time of the electronic

FIG. 1. Leading Quctuation contributions to the mo-
mentum relaxation rate according to Eq. (6).
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While the coefficient of e s" in (8) is larger by
the factor ln2(EF/T) it is clear that there is no
choice of parameters for which this expansion is
convergent. This implies that the critical region
in this problem is of the order of the transition
temperature arid nonlinear fluctuation effects are
important. However, the main consequence of
the higher-order fluctuations is to renormalize
the critical temperature to zero temperature, but
they are not expected to change the overall qual-
itative behavior of ¹ It is noteworthy that the
term shown in Fig. 1(b) is the high-temperature
counterpart of the pinning term which was found'
to destroy Frohlich superconductivity in an or-
dered state. In such a state it is the collective-
mode scattering with momentum transfer of 2k F

to the impurity which is responsible for the pin-
ning of the charge-density wave and destruction
of Frohlich superconductivity. In the fluctuation
regime, this process leads to an enhancement of
the momentum relaxation rate and therefore of
the resistivity.

In passing from ~ ' to the resistivity p a factor
of m*/ne' enters, where n is the electron density
and m" is an effective mass. The value of m~

may be obtained by examining the transport equa-
tions in the phonon-drag regime in the absence
of impurities, or the expression for p ' obtained
in the ordered phase. ' In both cases m* is en-
hanced by a factor containing the number of pho-
nons at 2kF and this factor will give rise to an ad-
ditional enhancement of the resistivity in the fluc-
tuation regime.

Let us now consider a general two-body inter-
action Hamiltonian of the form H, +II,+H~, where

&s (gi/L') +~a~. ~&2-2aF. s &a, e a4 my. -

All the k, are near +kF. The coupling constants
and g, repre sent scattering with momentum

transfer near 2kF and 0, respectively. Again one
can relate the momentum relaxation rate ~ ' to
ImN(2kF, ~) within the Born approximation. The
response functions for a momentum transfer near
2kF have been calculated using the renormaliza-
tion-group method by Solyom. " For an attractive
interaction at 2kF (g, &0) the first-order renor-
malization method leads to a singularity at finite
T and the coupling scales to the strong-coupling
limit. Second-order renormalization-group meth-
ods remove the singularity to zero temperature
as must be the case for a one-dimensional sys-

tern" and Solyom' finds the result

ReN(2kF+q, &o)-[max(vFlql, (u, T)/Ep] . (10)

Using the Kramers-Kronig relation one obtains
corresponding results for ImN(2k„+q, u&), and one
obtains the result, using (10), that

1(T/E )
-s/2 (11)

Again the fluctuations enhance the momentum re-
laxation rate and thus lead to an enhanced resis-
tivity. In this system the Cooper-pair response
function 4 is also diverging and the effect of this
divergence can be traced as a high-order set of
terms in the perturbation expansion for N, which
are opposite in sign to the dominant terms arising
from the Peierls instability. Formula (6) is ap-
plicable only in the weak-scattering limit (7T &1).
As the scattering rate grows this condition is vi-
olated and one must include impurity scattering
to higher order, especially in the calculation of
N itself.

The Hubbard model represents a special case
of the Hamiltonian (9), in which g, —=g, =g. Thus
for g &0, resistive fluctuations are predicted. An
interesting limiting case occurs if we set g, = 0.
The model is then the Tomonaga model. The
form of N(2kF+q, ~) within the renormalization
method is drastically changed and one finds

N(2kF+q, &u) —[max(v„lql, ~, T)/E, ] '2'"e. (12)

Thus for attractive interactions (g2 & 0), N- 0 as
T-0. A similar result holds for the imaginary
part and one finds 7 '- ~, '(T/EF) 'a'"W. Within
this model the fluctuations enhance the conduc-
tivity. These results are in agreement with the
exact results of Luther and Peschel'4 and of Mat-
tis" for the Tomonaga model. For the more gen-
eral model with g, 0, the behavior will be gov-
erned by g, primarily and the conditions to ob-
tain enhanced conductivity, i.e., N- 0 rather than
N-~, are g, &0, and 2g, -g, &0. In practice
these conditions will be hard to realize since a
study' of the combined electron-phonon and elec-
tron-electron Hamiltonian shows a strengthening
of the singularity in N(2kF, v) and a diminishing
of that in b. (2kF, &o).

In conclusion, we find that for most circum-
stances, a one-dimensional metal will have a
divergence in the electronic polarizability near
2kF which will lead to enhanced momentum scat-
tering rate from impurities in the fluctuation re-
gime. However the overall behavior of the resis-
tivity as the temperature is decreased will be de-
termined by the combined umklapp phonon scat-
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tering rate and the impurity scattering rate. The
leading umklapp process will decrease exponen-
tially with temperature and, depending on sample
conditions, may be the dominant contribution.
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The forward-angle oscillations recently observed in heavy-ion transfer reactions are
explained as the Young interference pattern of a refractive two-slit "optical system" in
l space, and a new phenomenon is predicted.

The forward-angle oscillations observed' ' in
heavy-ion transfer reactions undergo a character-
istic modification as the bombarding energy is in-
creased into the range where the nuclear force
significantly modifies the Coulomb trajectory.
We offer here an analysis of distorted-wave Born-
approximation (DWBA) calculations which fit
these oscillations, to show that their energy de-
pendence can be understood in simple optical
terms (diffraction, refraction, and interference),
and to predict an interesting new feature of the
oscillatory pattern which should appear at bom-
barding energies somewhat higher than those em-
ployed up to now.

An example of these a,ngular distributions is
shown in Fig. 1, which displays LOLA' calcula-
tions of the (one-step) reaction "Ca("0,"C)"Ti
to the ground state. The familiar "grazing-angle

peak" seen in the 40-MeV curve moves to more
forward angles and becomes "inundated" by the
oscillatory pattern at 56 MeV. This is further
accentuated in the 85-MeV distribution, which
also exhibits the qualitatively new feature, a
"modulation" of the envelope of the oscillations,
giving them exceptionally large peak-to-valley
ratios at 0, 35, and 70', with small peak-to-val-
ley ratios at 15 and 50.

Several interesting papers"' ' have recently
provided partial explanations of certain of these
features. Our purpose here is to indicate how
these discussions can be unified, and extended to
explain the amplitude modulation seen in the 85-
MeV curve of Fig. 1. The oscillations, as point-
ed out by Chasman, Kahana, and Schneider, '
(CKS) are an interference phenomenon, arising
basically from the highly peripheral nature of
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