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By a molecular-dynamics simulation of a three-dimensional system of 4000 particles,
we show that the long-time tail of the velocity autocorrelation function has the form
not ~, where t is the time and no a coefficient depending on the kinematic viscosity
and on the diffusion coefficient.

Alder and Wainwright' have shown through mo-
lecular-dynamics computations on systems of
hard disks and hard spheres that the velocity
autocorrelation function (vaf) decreases like
apt" when the time t is large compared to the
collision time (d is the dimensionality of the sys-
tem, np is a coefficient dependent upon the den-
sity p). This behavior has been justified in the
limit of small densities by kinetic theory' and
has been shown to be plausible for a fluid system
at all densities on the basis of hydrodynamical
arguments. ~ Thus, for three dimensions at large
time, the vaf (V(0) ~ V(t)) should be given by

2kqT 1
(V(0) ' V(t)) =

[4 (f) ) t]$12,

where k~ is Boltzmann's constant, T the temper-
ature, m the mass of the particles, D the self-
diffusion coefficient, and v the kinematic viscos-
ity.

However, in molecular-dynamics calculations,
the asymptotic behavior apt ' can be observed
only for times t such that the boundary conditions
have no influence on the vaf. More precisely,
the time t has to be smaller than some character-
istic time t, - l/c, where l is the length of the
edge of the cubic box containing the system and
c is the sound velocity. Thus, when the number
of particles is too small, at any density, l is too
small for the asymptotic regime to be reached
for t & t,. In the work of Alder and Wainwright'
on hard spheres, the number. of particles is 500
and t, is nearly equal to the time when the asymp-
totic regime starts. The aim of the present study
is to calculate the velocity autocorrelation of a
fluid system with a number of particles sufficient-
ly large for the asymptotic regime to be reached
at a time t& tp This allows an accurate test of

the validity of the above expression for O. p at high
density.

We have computed the vaf for a system of 4000
particles interacting through a potential

V (r) = 4e[(o/r)" —(o/r)']+ e for r ~ 2' 'cr,

=0 for y'&2 I 0

The density is p = 0.45 particles/e and the tem-
perature T =2.17'/kB. At this density and tem-
perature the thermodynamic properties are

P/pksT = 2.72, U;/NksT = 0.347,

C„/ks =1.89, (ksT) i(BP/BT) = 5.70,

(k,p) -'(sP/eT), = 2.34,

where P is the pressure, 0; the internal energy,
and C„ the specific heat at constant volume. These
thermodynamical properties are computed either
in the molecular-dynamics calculation, or by the .

perturbation theory which is accurate to within
a few percent. The sound velocity is c =0.621o/
7 p whe re ~p is the chosen time unit

T, = (mH/48. p".
At the density considered, the system is enclosed
in a cube whose edge is

l = 20.714e,

so that t p 337'p The movement of the particles
is calculated by the algorithm

x;(t+h) =x;(t —h) —2x;(t)+h2F, (t),

v;(t+h) =v;(t —h)+2hF;(t),

where x;(t) and v;(t) are the position and velocity
of particle i at time t; k is the integration step,
h = 0.0327p.

The vaf f (t) is obtained at time t =kh, where k
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TABLE I. Normalized vaf of the two molecular dy-
namics computations and the weighted average. The
time t is divided by the step of the integration h, .

tlh
0 '1.0 1 ~ 0 1.0

- 5.0
20 0.69 170 0.69166 0.69169

40 0.4 l428 0.41378 0.4 '1410

60 0.25893 0.25834 0.25872

80 0. 17202 0.17135 0. 17178

100 0. 12202 0.12118 0.12172

120 0.09166 0.09070 0.09131
-6.0

140 0.07162 0.07091 0.07136

278

160 0.05735 0.0571 1 0.05726

18o 0.04655 0.04663 0.04658

200 0.03845 0.03870 0.03854

220 0.03217 0.03243 0.03226

240 0.02723 0,0271 1 0.02719

260 0.02305 0.02272 0.02293

280 0.01986 0.01905 0.01957

300 0.0'l716 O. 0 l654 0.01694

320 0.01504 0.0 l485

340 0.01343 0.0 l 334

0.01497

o.0 l 340

360 0.0 l 224 o.01227 0.01225

380 0.01102 0.01 l 09 0.0 'l 105

400 0.00989 0.00960 0.00979

420 0.00903

44O O. OO815

0.00829 0.00876

o.oo724 o.oo782

460 0.00735 0.00654 0.00706

480 0.00658 0.00605 0.00639

500 0.00599 0.00555 0.00583

520 0.0055 I 0.005 27 Q. 00542

540

560

0.005 l 3 0.00494 0.00506

0.00469 0.00492 0.00477

580 0.00440 0.00485 0.00656

600 0.00431 0.00454 0.00439

620 0.00421 0.00441 0.00428

640 0.00396 0.00409 0.00401

660 0.00380 0.00399 0.00387

760 0.00324 0.00339 0.00329

780 0.00320 0.00340 0.00327

680 0.00382 0.00375 0.00379

700 0.00359 0.00350 0.00356

720 0.00323 0.00356 0.00335

740 0.00312 0.00356 0.00328

,Lo G P«. l
2.5 3.0

FIG. 1. The log-log plot of the function f(t) for t
& 400' (dots). The full line is a straight line with a
slope —2.

is an integer, by the formula

p N

E {Zi;((k) v;[() —k)k])
f(hh) =

{Pv,. (lh) ~ v,. ((h))

where p is the total number of integration steps
carried out from given initial conditions. For
practical reasons, the sum over l is not comput-
ed over all integration steps but only for l =k„
l:kp+n, l =kp+2n, L =kp+3n, . . . with n=20 and

k, =800. The maximum value of k is k =780.
The values of P for two calculations done at the
same temperature but starting from different ini-
tial conditions were P =18 600 and P =24000.

Last, to avoid any rounding-off error in the
calculation, all computations were made using
the integer arithmetic of the computer. Each
calculation takes about 30 h on a UNIVAC 1110
computer.

The results of the two calculations are given in
Table I, together with the weighted average ac-
cording to the number of integration steps. Fig-
ure 1 shows, on a log-log scale, the average vaf.
Figure 2 shows the ratio B(t) of the vaf f (t) to a
function yt 3 ', where y is chosen so that for t
=620k this ratio is 1.

From the numbers of Table I, one can estimate
the statistical error on the vaf: The difference
between the two calculations is maximum for k

=740, where it amounts to 14%%u() of the average
value of f(t). Between t =0 and f =200h, this dif-
ference is smaller than 1%, between t =220h and
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FIG. 2. The ratio f(t) t3i2/y (dots) and the function
logf(t) (full curve) versus t.

400k it is of the order of 2% but sometimes
reaches 4%; finally between 400h and 780k it is
roughly 5 or 6%, with the already mentioned ex-
ception at 740k. The average error on f(t), for
t &400h, can therefore be estimated to be 7 or
8%. The maximum time for which f (t) is calcu-
lated is t = 25&,. This time is sufficiently small-
er than t, -33m, for the effect of the boundary con-
ditions to be negligible.

Figure 1 shows the log-log plot of f(t): For t
)460h the plot is nearly linear. This result is
confirmed in Fig. 2, where the ratio R(t) = f(t)/
yt" I fluctuates around 1 for t &460k. The am-
plitude of the oscillation of R(t) around 1 is never
greater than 7%, which is within the error on

f(t)
If one assumes that for t & 460h, f(t) is of the

form f(t) - nt sl' with n = n, m/3k zT one finds
for e the value

n = (0.377+ 0.01)wo j

Ithe uncertainty takes into account the statistical
uncertainty in f(t)]. This value can be compared
with the value predicted by Eq. (1).

If one integrates the vaf from t =0 to t-460k
(the time at which the asymptotic t 'I' behavior
is reached) one gets a diffusion coefficient D
= 0.0764. If one then calculates the contribution
due to the long-time tail of the vaf, with the val-
ue of e given above, one obtains 0.0088, yielding
a total D of 0.0852. The contribution of the long-
time tail between t = 460k and t = 780k is 0.0020.

The calculation of the kinematic viscosity has
been made by one of us by simulation of a Couette
flow' through molecular dynamics; the result is
v=0.143+ 0.03. The corresponding value for a

is (0.31 + 0.07)7', I'. The' uncertainty comes main-
ly from the uncertainty in v; the uncertainty in
D is less than 1%. One sees, therefore, that the
transport coefficients obtained by molecular dy-
namics are compatible with Eq. (1). At this de-
gree of accuracy, there is no need to introduce
"bare" transport coefficients. '

Our calculation shows that the asymptotic re-
gime is reached after a relatively short time.
Since the interparticle potential is purely repul-
sive and of finite range, one can define a colD-
sion time using the equivalent hard-sphere radi-
us of perturbation theory. ' At the density and
temperature considered, this collision time is
7„i=0.797T0=25.53k. The asymptotic regime is
therefore reached after approximately 18 colli-
sions,

Note that the accuracy of our calculation does
not enable us to test the predictions concerning
the corrections' to the main term et '. The
coefficient in front of the t ' term is indeed a
hundred times smaller than e when it is comput-
ed using the equivalent hard-sphere radius and
the Enskog formulas for the transport coefficients.

For times smaller than 400h, when the asymp-
totic regime is not yet reached, the present re-
sults are identical to those already obtained at
similar density and temperature. In this temper-
ature range, there are two relaxation regimes
for the vaf, one quasi-Gaussian, at small times
(0 ( t (200k), the other quasi-exponential at times
200h c t &440k. This can be seen in Fig. 2. This
behavior can be represented in terms of memory
function as in Ref. 8.

A last remark concerns the possibility of exper-
imentally observing the asymptotic regime, for
example, in argon. The only possibility seems
to be to use neutron diffraction measurements of
the incoherent dynamic structure factor S&(k, v).
One knows that

f( ) l. tPlhPS)(k, (d)

u, v'u'

where f(v) is the Fourier transform of f(t) and
k is the wave vector, and one expects that

f(cu) - k —an&"(u+. . . ,

where a, b are some constants. In our calcula-
tion, such a behavior is reached for ce (0.02vo '.
On the other hand, the analysis made in Ref. 8
shows that the amplitude c,(k, t) of the current
autocorrelation function, whose Fourier trans-
form is ~'S;(k, ~), decreases very rapidly for
large times (t &200h) when k increases; it is

279
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therefore difficult to make the k = 0 extrapolation
in Eq. (2) when oi-0.

This molecular-dynamics calculation shows
that the vaf of a dense gas at a near-critical tem-
perature behaves asymptotically like at ', the
value of the coefficient n can be deduced from
the transport coefficients v and D. These results
confirm those obtained by Alder and Wainwright'
and by Woode for systems of 500 and 4000 hard
spheres.

The authors are particularly grateful to L. Ver-
let and J. J. Weis for their help in realizing this
work.

*Laboratoire associh au Centre National de la Re-
cherche Scientifique.
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Photographs of Quantized Vortex Lines in Rotating He IIe
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The spatial positions of discrete quantized vortex lines in rotating superQuid helium
have been directly visualized by a photographic technique. The positions of the lines in
the apparatus do not form a regular array.

The unique properties of He II have been asso-
ciated with the existence of a macroscopic wave
function which determines the behavior of the su-
perfluid component. From this idea Onsager' and
Feynman2 predicted that He II should exhibit vor-
ticity with circulation quantized in units of h/in,
where h is Planck's constant and m is the mass
of the helium atom. For almost two decades phys-
icists have been exploring theoretically and ex-
perimentally the phenomena associated with these
vortices. ~ A wealth of convincing information is
available which supports the existence of vorti-
ces, the most direct experiments being those
which proved that circulation in He II is quan;
tized~' and that He D comes into rotation in a se-
ries of quantum steps. ' There has still been one
experiment which has enticed workers for some
time: actually to make directly visible the dis-
crete vortex lines in the rotating He II. (An anal-
ogous experiment has been done to visualize flux-
oids in a superconductor. ') This Letter describes
the first successful experiment which records the
positions of the vortex lines in helium. We point
out that. according to current ideas the vortex

core is a node in the macroscopic wave function.
This is one of the only measurements we know
which directly measure the positions of the nodes
of a wave function.

The method we employ is conceptually simple.
Vortex lines should appear in a container of He
II rotating at angular velocity ~, with a predicted
density' of 2~nz/ lhines/cm'. Electrons formed
near a radioactive source are injected into the
rotating He II. The electrons form bubbles (ra-

0
dius -16 A) which become trapped on vortex lines
in a Bernoulli trapping potential. ' The lines are
charged for about 10 sec, after which an axial
electric field is applied which pulls the ions
through the liquid meniscus. Once free of the liq-
uid, the electrons are accelerated and impinge
on a phosphor screen where they produce a flash
of light, thus marking the position of the line
where it meets the free surface.

There are numerous complications which con-
spire to defeat the simplicity of this method.
First of all, the experiment must be done at tem-
peratures below 0.6 K so that the helium vapor
pressure is low enough to allow the use of elec-
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