VOLUME 33, NUMBER 4 PHYSICAL REVIEW LETTERS 22 Jury 1974

Asymptotic Behavior of Non-Abelian Gauge Theories to Two-Loop Order*
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We have calculated the value of the Callan-Symanzik 8 function to order g5 for non-Abe-
lian gauge theories with fermions. We discuss internal consistency of the calculation,
and consider the approach to the aymptotic energy range in such theories.

There has recently been much interest in non-Abelian gauge theories of the strong interactions. Re-
normalization-group parameters have been calculated to lowest order,! and a subclass of these theo-
ries has been found to asymptotically free.? The value of B in g° order is interesting for study of the
approach to the asymptotic energy range. It also provides some control over the “effective coupling
constant,” leading to field theories with short- and long-distance behavior calculable in perturbation
theory. We present below the result of a calculation of 8.

The bare Lagrangian for a theory of interacting fermions and gauge mesons is

£=-3Tr{o,B,-0,B,+iglB,,B,]1}*-a* Tr{(8"B,)?}
+2Tr{o,0*0" ¢ + igd,0¥B,, 0|1+ J(if - gB* 0, — M)y. 1)

The gauge field is B, =Z)GB#“ T,; the 7, are the matrices of the adjoint representation of G, a compact
Lie group. The ghost field is ¢ =2, ¢*7,, the fermion field is ¥=),,9%0,, and the o, are the ma-
trices of R, the representation of G under which the fermions transform. The term a ™! fixes the
gauge. The group invariants which enter into the result are C,(G) and C,(R), the quadratic Casimir
operators of the adjoint and fermion representations, and the trace T(R) of the fermion representa-
tion, defined by T (R)6,,=Tr{o, 0, }.

B was calculated using the dimensional-regularization technique of 't Hooft and Veltman.® The scal-
ing equations in this renormalization framework were derived by 't Hooft.* The Green’s functions of
the theory with I fermions, m gauge bosons, and n ghosts satisfy the “new” renormalization-group
equations®*~®

2 o 2 s 2 (lmn) _
[u ”m +B(g) 3g+5(g, a) ¥ +yr(gM ot my(g,a)+2nys(g, a)+217p(g,a)]G =0. (2)

The renormalized coupling constant is g, the gauge parameter is ¢, the renormalization scale param-
eter is u, and the fermion mass matrix is M. Within this renormalization framework, B is indepen-
dent of &.” For simplicity, 8 was evaluated in Feynman gauge (a =1).

The renormalization counterterms were fixed by requiring that they be of the form

Z=1+z/€+higher order terms in 1/e, 3)

where 7 is the dimension of space-time and €=4 -%. Z and z are power series in g% and the gauge pa-
rameter a. The counterterms calculated include those for the ghost propagator (53), the ghost gauge
boson vertex (Z~1), the gauge boson propagator (Z;), and the triple boson vertex (Z,). These are relat-
ed by a Ward-Takahashi identity,® Z,/Z, =Z~1/Z~3. To check the calculation, all four were computed in-
dependently. The connection between 8 and the counterterms is given by*?®

B(g)=g%(8/0g%)(Z, -2, - 52,)=g%(8/0g)(Z, - Z,). (4)

There are similar formulas for anomalous dimensions of the fields. The technique used to calculate
the pole terms will be explained in detail in a future publication.

There are several internal checks on the calculation. No terms of the form Ing® or (equivalently, in
this theory) y¢ (Euler’s constant) should appear. The double-pole (1/€2) terms may be independently
calculated using the scaling equations of ’t Hooft. Only the check using the Ward identities is nontrivi-
al. Because of the complexity of the algebra, this check was considered necessary.
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We find that

= £ g 7 _u 4
ﬁ(g)—_bo 16772+b1 (16”2)2+0(g ); bo“%cz(G)_ET(R)y (5)
b,=-%C%G)+ R C,(G)T(R)+4C,(R)T (R).

In the following examples we will specialize to SU(N), and choose for R the vector representation. We
assume m fermion multiplets. The relevant group invariants are then C,(G)=N, T(R)=3m, and C,(R)
=(N*-1)/2N.}

For SU(3), B(g)/g near the origin is presented in Fig. 1. The effective perturbation-expansion pa-
rameter is g2C,(SU(N))/16m%. We may choose the number of fermion multiplets to obtain the theory
with the smallest value of the first nontrivial zero of 8. With sixteen fermion multiplets we obtain a
theory with calculable short-distance (g~ 0) and long-distance (g - g,) behavior, for g initially be-
tween 0 and g,. g, is B’s first zero past the origin, g,?/167%=1/302 + higher-order corrections. The
fractional correction due to the three-loop contribution is expected to be roughly (g,2/167%)T(R)~ %,
and is probably negligible. If the coefficient of the three-loop term is surprisingly large, we may con-
sider SU(N) for N larger than 3. Choosing m to minimize the first (b,) term, we may ensure the ex-
istence of a zero of B(g) valid in perturbation theory, even for abnormally large g’ contributions.® g,
is a simple zero of B(g). As g—g,, the theory approaches a dilatation- and conformal-invariant Gell-
Mann-Low limit theory.?® Solving the renormalization group equations, with A scaling all momenta of
the Green’s functions (f =1In)), we find deviations from the limit theory smaller by powers of A rather
than by logarithms (which characterize the g— 0 end):

o 2 242
g12 _ gz(t,g) \Zo )\21’1(&'1 /16T2)% _ ) 1/453 , (6)

for SU(3) with sixteen fermion multiplets.

For pure gauge theories the g° term is negative, and the approach to the asymptotic region is en-
hanced. We might expect the domain of attraction of the origin to be large (which would be appealing
in a theory of the strong interactions). The effective coupling constant g(f,g) satisfies

As A — o (f - ), g approaches zero as
2it,g) 1 b, Int <i)
167 t5=320.7 47 ¢ O\2) ‘ ®

For SU(3) with three fermion triplets, which may be relevant for theories of the strong interactions,

Ziteg) 1 _16 Int (.1_
Tore tS-18f 729 2O\ ) )

0.25¢ m =17
m=16
m=15
o FIG. 1, Shape of g(g)/g near the origin, for SU(3)
= o | with m fermion multiplets. x =effective expansion
A 05 parameter=(g?/1672)Cy(SU(3)).
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The second-order term slightly enhances the approach to zero. For m =16,

g't,g) _ 3 1359 Int (l
1610 .2t 2 £ O\E) (10)

and, as we expect for 8(g) small, g approaches its asymptotic values (g =0 and g =g,) only slowly.

We do not expect to find a gauge theory of the above type where B8 starts out positive and goes nega-
tive near enough to the origin for the zero to be valid in perturbation theory. If the lowest-order term
is fixed to be zero, then

B(b,=0) = g°(167%) " 7C,2(G) +11C,(G)C,(R)]>0, 1)

for an arbitrary gauge group G. This is approximately the case for SU(3) with m =17 (b= -3).
I am grateful to C. Callan for his advice and support throughout this project. I wish to thank
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If e*+e” — & —hadrons, where & is a scalar, radiative beam polarization in storage
rings will induce an apparent time dependence of the cross section during an experimental
run. This should provide a critical test for models which rely on such a scalar mecha-
nism to enhance the cross section in the present energy range. A model of this kind is
presented which identifies & with a composite Higgs field in gauge theories. We check
for consistency with other processes and note that there may be an important relation to
the shoulder in the dimuon mass distribution in pp—pu*u~X.

Synchrotron radiation in an e*e” storage ring nitude of the polarization builds up toward a lim-
leads to transversely polarized beams where the iting value from the time of injection of the beams
electrons (positrons) are polarized antiparallel into the ring, with a characteristic time constant
(parallel) to the guide magnetic field.! The mag- dependent upon the energy and other machine pa-
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