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The reaction ¥Fe(p,n)*Co was studied at E, =22.8 MeV for both the isobaric-analog-
state (IAS) and antianolog-state (AAS) transitions. The difference in the observed angular
distributions for these two L =0 transitions is not as striking as in (*He,t) measurements.
The strong cancelation expected for the AAS case was observed. The shapes of the angu-
lar distributions for both the IAS and AAS were improved by inclusion of a coherent two-

step (p,d)(d,n) process.

Nuclear reactions such as (p,n), (°*He,t), and
(m*, 7°) can proceed through a simple charge-ex-
change mechanism. This mechanism explains the
strong population of the isobaric analog state
(IAS) which is observed for (p,n) and (°He, ¢) re-
actions on target nuclei with more neutrons than
protons. The IAS has the same spin and space
wave function as the target ground state, differ-
ing only in the z projection of the nuclear isospin.
In the case that the excess neutrons occupy sev-
eral neutron orbitals their contribution to the IAS
cross section is coherent and constructive for a
charge-exchange reaction.

When the excess neutrons occupy more than one
shell in the lowest-order shell model, one can
construct states in the residual nucleus with the
same J and 7 as for the IAS but with isospin one
unit smaller.! These states are called antianalog
states (AAS). In the event that the charge-ex-
change transition amplitudes associated with var-
ious neutron orbitals are similar, strong cancel-
ation should occur so that charge-exchange reac-
tion cross sections to the AAS should be weak rel-
ative to those for the IAS.! Because of the strong
cancelation, the AAS cross section should be
quite sensitive to details of the target-nucleon
configuration. It is of more than usual interest,
then, to study charge-exchange reactions leading
to AAS.

Identification of AAS of even-even targets has
generally been made by finding a single 0 * level
below the IAS. A variety of reactions have been
used to make such assignments including the low-
energy *°Ar(p, n)*°K study by Twin, Olsen, and
Wong.? In that study, however, the reaction was
completely dominated by the compound-nucleus
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mechanism rather than a charge-exchange mech-
anism. When AAS were studied by the (*He, ?)
reaction by Hinrichs et ¢l3 it was found that the
observed angular distributions were roughly out
of phase with those of the IAS and could not be
explained by a one-step charge-exchange mech-
anism.

A suggestion was made by Schaeffer and Bertsch*
that an out-of -phase shape could be obtained by
contributions from the (®He, a)(a, ¢) reaction.
Their suggestion led to a detailed calculation by
Coker, Udagawa, and Wolter® who showed that
the cancelation of the coherent one- and two-step
amplitudes gave an out-of-phase angular distri-
bution. )

It remained to be seen whether the (p, z) reac-
tion at a higher energy where the compound-nu-
cleus effects are smaller would exhibit AAS an-
gular distributions which were markedly differ -
ent from those of the IAS, and whether a similar
two -step process could successfully describe
(p,n) AAS data. In this Letter we report the
first reasonably complete angular-distribution
data for a (p, n) reaction to an AAS with a bom-
barding energy clearly in the direct-reaction
regime. These data were acquired with a unique
new experimental facility which allows the use
of heavily shielded long-flight-path detectors
while still retaining the ability to take angular
distributions over a wide range of angles.

We have chosen to study the (p, ») reaction to
AAS for two reasons. First, the nucleon-nucleus
optical potential is well founded in comparison to
that for complex projectiles, making analysis
more straightforward. Second, the (p,#) reac-
tion is more sensitive to interior portions of the
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nuclear wave function while the (*He, #) reaction
is mainly influenced by the nuclear surface be-
cause of strong absorption of complex projectiles,
thus making the predicted one-step cancelation
for AAS with (p, ») reactions more striking than
in the (°He, ?) reaction. The (p, n) reaction study
is, of course, experimentally more difficult;
however, these difficulties are partially offset by
larger cross sections and by the use of thicker
targets than those that can be used in (®He, ?)
studies.

We chose the reaction **Fe(p, n)**Co for our
first study. The measurements were made with
the University of Colorado rotating-beam neutron
time-of-flight spectrometer® at a proton energy
of 22.8 MeV. This new system employs neutron
detectors at fixed, well-shielded positions and
varies the angle of incidence of the beam upon
the target to obtain an angular distribution. Ini-
tial data were obtained at 9 m flight path where
Gaussian unfolding procedures were necessary to
extract the area of the AAS peak at 1.45 MeV
from that of the neighboring 1.72-MeV level.
These data were verified and extended by subse-
quent measurements at a flight path of 29 m. Two
2.54-cm X 20-cm NE-224 liquid scintillation de -
tectors were placed side by side in an earthen-
shielded bunker for these longer —flight-path mea-
surements. The 9-m measurements utilized
three similar detectors in concrete shields ar-
ranged so that data for three angles were ob-
tained simultaneously. Neutron-y discrimination

was employed to reduce background. A time-of-
flight spectrum is shown in Fig. 1 with shorter
flight times and hence higher neutron energies
to the right and a time per channel of 0.3 nsec.
The known doublet character” of the IAS in %¢Co
was evidenced by the increased width seen for
this peak compared to adjacent peaks.

The incident proton beam was varied in angle
to obtain data between 10 and 120° lab angles.
The target was 6-mg/cm? natural iron. The %‘Fe
component of natural iron cannot produce neu-
trons with energies above those of the IAS group
in Fig. 1. The °"Fe and **Fe components can.
Spectra taken with an 5"Fe target indicated no
sharp levels near the °°Co AAS. The 0.33% **Fe
component cannot produce a detectable neutron
group except possibly for its IAS transition which
would lie beside the °°Fe IAS group.

The angular distributions for the *®Fe IAS and
AAS transitions are shown in Fig. 2. The strong
cancelation predicted for an AAS is quite evident
in the data. The clear-cut difference in phase of
the angular distributions seen in (®*He, #) measure -
ments is not nearly so evident in the (p, »n) data
although there are substantial differences in the
two L=0 transitions of Fig. 2.

The solid curves in Fig. 2 are distorted-wave
Born approximation (DWBA) calculations for a
one-step charge-exchange process with a 1-fm-
range Yukawa interaction between the projectile
and target nucleons. The dashed curves are the
calculations for the (p, d)(d, n) process® from a
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FIG. 1. Time-of-flight spectrum for *Fe(p ,n)%®Co taken with one 1-in. X 8-in. detector at the 29-m station at an
angle of 10°. Time per channel is 0.3 nsec. The AAS level is at 1.45 MeV excitation.
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FIG. 2. IAS (squares) and AAS (triangles) angular
distributions obtained for ¥Fe(p,n) at E,=22.8 MeV.
Solid curves result from DWBA (charge-exchange only)
calculations normalized to IAS. Dashed curves are ab-
solute (p,d)(d,n) two-step calculations using experi-
mental (p,d) spectroscopic factors.

differential -equation solution for the second-or-
der DWBA term. The intermediate states in the
deuteron channel include the first six states of
TFe.

The charge-exchange calculation is normalized
to the IAS cross section with the one free param-
eter, V,=22 MeV. Optical-model potentials for
the projectiles are given in Table I. No reason-
able variation in the range of the interaction, op-
tical potentials, or nuclear wave function was
found which could substantially improve the shape
of the calculated angular distributions. The (p,
d)(d, n) calculation uses the experimental spec-
troscopic amplitudes and hence has no free pa-
rameters.

The coherent addition of the charge exchange
and (p, d)(d, n) amplitudes gives the angular dis-
tributions in Fig. 3. The charge-exchange strength
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FIG, 3. Second~order DWBA calculations for IAS
(squares) and AAS (triangles) angular distributions.
Calculations include (p,d)(d,n) two-step process and
charge exchange. Solid curves give results due to ex-
perimental spectroscopic factors for the (p,d) reac-
tion, and dashed curves result from arbitrarily modi-
fied spectroscopic factors and show the relative sen-
sitivity of the AAS prediction to details of the %Fe wave
function. Charge-exchange strength, 33 MeV.

must be increased to V . =33 MeV because of the
destructive interference between the one- and
two-step amplitudes for the IAS state. This
strength is the same as found previously in anal-
ysis® of (p, n) reactions in neighboring nuclei.
The resulting shape of the angular distributions
is improved for both the IAS and the AAS. Varia-
tions of the Yukawa range in the one-step com-
ponent between 0.7 < 4 <1.2 did not greatly alter
the AAS/IAS ratio but did slightly worsen the IAS
fit.

The calculations for the solid curves in Fig. 3
have been made with published values® of the
spectroscopic factors:

Sy,=0.87, S,,=1.00, S,,=0.42.

TABLE 1. Optical-model potentials.

Ve TR ar Wy Wp Ry ar  Vso 7so aso

(MeV) (fm) (fm) (MeV) (MeV) (fm) (fm) (MeV) (fm) (fm)

p +%Fe 51.1 1.17 0.75 2.34 6.93 1.32  0.56 6.0 1.01 0.75
n +%Co 53.1~0.3E, 1.17 0.75 0.22E, — 2.7 11.4—0.25E, 1.32  0.56 6.0 1.01 0.75
d+%Fe 110.7—0.32E, 1.17 0.779 0 24.5—0.25F, 1.32  0.593 12.0 1.01 0.75
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An indication of the sensitivity to the details of
the nuclear wave functions is given in a second
set of calculations made with

S, =0.47, S,,=1.40, S,,=0.42.

The IAS prediction is virtually unchanged. The
AAS prediction was changed, however, with the
results shown in the lower dashed curve of Fig. 3.
Thus, even though two-step processes may sig-
nificantly affect the (p, n) reactions as well as .
(®He, ?) reactions, the expected sensitivities to
nuclear wave-function details for the AAS transi-
tions remain in the (p, ) calculations. It should
be further noted that the two-step processes in
(p,n) reactions appear to be less important than
in (®°He, ?) reactions where the two-step process
alone can fully account for the IAS and AAS cross
sections.®

The present calculations are fairly crude. For
example, we have not explicitly included the
knock-on exchange'® but have accounted for it im-
plicitly in renormalization of the charge-exchange
strength; thus we have assumed it has the same
effect for the AAS transition as for the IAS. Fur-
thermore, the charge-exchange interaction was
taken to be of Yukawa form which may be some -~
what too simple to provide a satisfactory mono-
pole form factor.!’ Finally, we have not included
other possibly important two-step processes. We
have calculated multistep contributions through
inelastic channels and found them to be of negli-

gible importance for both the IAS and AAS tran-
sitions. We cannot, however, rule out the pos-
sible importance of other (p, X)(X, #) processes
where X is a cluster more complicated than di-
nuclecns.
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The lowest T =$ level in “!Sc is observed as an isospin-forbidden resonance in “Ca(p,
po)‘“’Ca at B, 1,,=4.978 MeV with proton partial width I',=55+5 eV, which is about 50
times smaller than that previously assigned and 6 times smaller than theoretical width
estimates. The trend of the proton reduced widths for T =% isospin-forbidden resonances
obtained from I', values for target nuclei with 4=< Z=< 20 is shown to be consistent with a

z? dependence.

Nuclear levels can be characterized by the iso-
spin quantum number T which would be unique
for each level if electromagnetic (predominantly
Coulomb) and charge-dependent nucleon-nucleon
interactions were absent.! However, there is am-
ple experimental evidence for isospin mixing2™>

by which small admixtures of other T values
arise. Isospin mixing is generally believed to in-
crease rapidly with nuclear charge Z for Z < 20,
perhaps as Z%* for T=0 ground states,® and then
to decrease steadily with Z for heavier nuclei.>*®
One effect of the mixing is the small but nonzero
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