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Self-Modulation and Self-Focusing of Electromagnetic Waves in Plasmas
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The nonlinear frequency shift of a strong electromagnetic wave in a plasma, due to
weak relativistic effects and the v &&B force, can cause modulation and self-focusing in-
stabilities. These processes are explored, and their relation to self-focusing driven by
the ponderomotive force is described.

We describe a new mechanism producing self-
modulation and self-focusing of strong electro-
magnetic (EM) waves in plasmas. These effects
occur because relativistic plasma dynamics pro-
duces a nonlinear index of refraction for the plas-
ma. Even weak v'/c' relativistic corrections can
produce interesting self-modulation and -focus-
ing, for parameters of high-power lasers pres-
ently existing or under construction.

Previous mechanisms for self-modulation and
self-focusing of EM waves in collisionless plas-
mas' ' have used the ponderomotive force. ' Joule
heating can produce self-focusing in collisional
plasmas. " The temporal evolution of these two
processes relies on ion motion, and thus occurs
with characteristic frequencies I &u'I a ~~ =4mNe'/

M;. The relativistic mechanism explored here
requires motion only of the plasma electrons.
Hence modulations of an incident wave can grow
quickly compared to ion time scales, for incident
light of sufficiently high intensity. Litvak' and
Kidder' used nondynamical, geometrical optics
considerations to estimate self-focusing lengths.
Forslund, Kindel, and Lindman" described non-
relativistic modulational instability in a magnetic
field. To our knowledge, the present analysis is
the first treatment of EM modulational instability
with B,=O.

To derive the simplest features of relativistic
self-modulation and self-focusing, we model the
plasma as a cold uniform electron fluid with fixed
ion density X, irradiated by a linearly polarized
EM wave E =x&,cosy„y, =co, t —k, ~. The usual
relation between ko and w, is modified, for two
reasons. "" First, because of their motion in
the incident EM wave, electrons acquire a rela-
tivistic Lorentz factor y, = 1+—,'(v, sing) ', where
vo—= eE0/m, c&u, «1. This gives the electrons an
amplitude-dependent mass in the plasma re-

sponse, and results in an "inertial" current be-
cause of the difference between p and v. Second,
the v, & Bo force on the electrons produces a den-
sity perturbation ~N, having frequency 2+0 JKNp

= —Nv, '(cos2y, )(&u,
' —~~')/(4&v, ' —v~'). The re-

sultirig nonlinear current &N,vo has a component
at the pump frequency ~„and acts as a source
for E, gnd 8,. The index of refraction due to
these two nonlinear effects is"
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where v~' =—4m¹'/m, '4.
To study the dynamics of self-modulation and

self-focusing, we use a linear instability anal-
ysis. Our equilibrium is the EM wave described
above, together with its second-harmonic density
perturbation, &No, and the nonlinear a&0(ko) given
by (1). Linearized quantities vary in the y-z
plane. The perturbed vector potential 5a, —= e5A„/
m, c2 (Coulomb gauge) obeys the linearized wave
equation

5v„1+DN0 5n v~„=(d +c N N c

where 5n is the first-order electron density per-

turbationn,

and v 0„/c = —vo sinyo+ 0(vos).
To find a self-consistent solution, we must

know the values of 6v„and 6n. In terms of the
dimensionless momentum u, =p„/m, c, 5v„ is giv-
en by

Conservation of x canonical momentum relates
su„with the vector potential: Ou„=Go.„=e5A„/-
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m, c'. Hence Eq. (3) becomes"

5v„/c = 5n„[1 ——,
'

v,' sin'y, ]+ O(v, '). (4)

terms through O(vo ) in (7) and find

h(o =—(kc/2)((u»/(u, )'[(kc/(u, )' —v,'q]'~'.

8'5n/Bt'+ NV ~ (85v /Bt) = 0 + O(vo'),

85v/Bt =eV5y/m, zk—,c'v, oc)st,5a„

+ c'v, sin)(, V5n„+ O(v, '), (6)

where 6y is the electrostatic potential perturba-
tion.

We now put the pieces together and derive a
dispersion relation. Take the Fourier transform
of Eqs. (2) and (4)—(6) in y, z, and t. Write (2)
as two equations for the two quantities 5n„'
—= 5a.„(k+k„u:+ o;,). Substitute the appropriate
Fourier amplitudes of 5n and 5n„, determined
from (4)-(6), into the right-hand side of these
two equations for 50.„'. The equations for 5e,'
involve Fourier components of the electron den-
sity at 6n" and at 6n'. For ponderomotive force
mechanisms of self-modulation and self-focus-
ing, it is the 6n' component which dominates. In
contrast, for the present relativistic process the
5n" terms are more important in the ratio (u» /
k'c'»1. For the instabilities we discuss here,
the two scattered EM waves 5e„', and their ac-
companying density perturbations 5n", closely
resemble the driving wave E0cosy0 and its sec-
ond-harmonic density perturbation &W0. The
components 5n„'3 contribute terms smaller than
O(v, '), and hence will be neglected.

The above procedures result in two homogen-
eous equations for the Fourier amplitudes 50.„'.
The dispersion relation is the requirement that
the determinant of the coefficients vanish. We
assume I ~ I «(&u~'/u&0) and k' «ko [(u and k cor-
respond to the low-frequency density perturba-
tion 5n =-5n(&u, k)], and obtain

(&u2 —k c')2 —4(&ouo —k ko c')'

+ v,'&u»'q(~' —k'c') = 0, (7)

q =- 4 —(&u,
' —&u»')/(4~, ' —&u»').

To solve Eq. (7) for self-modulation, we take
k

~~ k, and set ~ = k (c'k, /ar, ) + hv —= k V, '+ Are. With
the ordering h~- v02&uo, k- vo(~o/c), we retain

The next task is to find the electron density per-
turbation 5n. It is sufficient to have the wave
equation correct to order v,'- I v,„'I/c'. Since 5n

appears in Eq. (2) multiplied by vo„, we need only
find 5n correct to order v0. The continuity equa-
tion and Lorentz-force equation are

A simple argument leads to possible modula-
tional instability for any weakly nonlinear wave
with dispersion relation ru(k, v) = v, (k) —Av', with
v the wave amplitude. " From the phase function
8(z, t) we define k=88/Bz, ~= —88/Bt-. Then the
relation Bk/Bt = —8+/Bz requires

(8/Bt+ V, '8/Bz)k =ABv'/Bz.

Consider. a sinusoidal perturbation 4v to the orig-
inal wave amplitude vo (Fig. 1). In a frame mov-
ing with the group velocity V,o= (8~,/Bk)»», Eq.

0
(10) says that the wave number hk =k —k, changes
in time at the rate 2voABhv/Bzo. Here z, is a
Lagrangian coordinate specifying position on the
wave envelope, and & is positive. In region a of

vo
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FIG, 1. The original wave envelope vo, and the mod-
ulated envelope vo+Ap, during self-modulation.

The first term in the square brackets represents
the mismatch between the sidebands and the
pump. For simplicity of presentation we have
also taken v0'»~~'. There is instability for k
((&u,/c)voq'~'. The maximum growth rate occurs
for k = (mo/c) v, (q/2)'~, and is given by

y,„=(cu»'/4&v, ) v, 'q.

The maximum spatial growth rate is» „=y~„/
V~ . During the instability, the driving wave ac-
quires two growing EM sidebands, at frequencies
&soak V and wave numbers (kook)z. The pres-
ence of these sidebands is equivalent to modula-
tion of the driving wave, because the total EM
response is of the form

sinxo+ a[sin()(0+ p) + sin()t'0 —cp)]

—= sin()(, + 2e sing), e «1.
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Fig. 1, where Bhv/Sz, &0, hk decreases with
time. When 8V, /Bk is positive, the decrease of
Ak implies that V~ decreases with time. Thus
in region a, energy slowly moves backward in
the frame moving with the average group velocity
V~ . Analogous arguments imply that energy
slowly propagates forward in region b. Thus en-
ergy accumulates at the local maxima of b, v,
causing a purely growing instability in the frame
moving with V,'. The ponderomotive force is not
a major effect in the dynamics of the instability.

For the contrasting case of self-focusing we
take k k, =0, and assume ~- v,'u„k- v, (w,/e).
We retain terms through O(v, ') in (7) to obtain

(u =—+ —,
' ikc [(kc/(u, )' —v,' q (&up/(u, )']' '.

The first term in square brackets represents dif-
fraction, and is stabilizing. The maximum wave
number for instability is given by k & (a~/c)voq ~2,

smaller by the factor co~/tu, than the analogous k

for self-modulation. The maximum growth rate
is the same as for self-modulation, but occurs
at a k smaller by the factor u, ~/o;, . Computer
simulations" support the growth rates predicted
by Eqs. (9) and (11). Steady-state self-focusing
can be understood by arguments from geometri-
cal optics. By Eq. (1), if the light intensity v,'
is locally enhanced at a point, the phase velocity
is decreased there relative to its value on either
side. The wave front curves, further enhancing
the intensity by focusing the light "downstream"
in the ko direction.

For simplicity we have neglected ion motion,
and hence have suppressed ponderomotive-force—
driven instabilities which compete with the pro-
cesses considered here. We emphasize that, for
high laser intensities, the relativistic instabil-
ities derived here can grow so quickly in time
that ion inertia prevents the ions from following
along. For self-focusing we estimate the inten-
sities when this can occur, by comparing the
growth rate due to ponderomotive force, yp
= v,v~, /2'~', with the maximum relativistic growth
rate (9a). The relativistic process is more im-
portant than the ponderomotive force, for the
temporal development of self-focusing, if v,
& (&u,v~;/&u~, ')(2' '/q). A more detailed study of
these two mechanisms for self-focusing verifies
this simple estimate. " Neglect of ion motion in-
the modulational instability of Eq. (9) is justified
when I &ul =kV~ mo~&; For the k .of maximum
growth, this condition is v, & (~~,/ck, )(2/q)'I'.

The assumptions I wl «sr~'/cu„k'«k, ', and k'
«~~2/c2 necessary for the above results to hold

are summarized by two inequalities. For an un-
derdense plasma we must have v, «(~~/~, )'.
Near critical density, on the other hand, the con-
dition koc» vox, must be satisfied.

The temporal growth rates represented by Eqs.
(9) and (11) are interesting for high-power lasers.
For example, consider a Nd-glass laser (c/&oo
=1.06 gm), I=5&&10'8 W/cml, incident on a plas-
ma with (', =1.7co~,. Then the fastest growth time
is 6&10 "sec for both modulational and self-
focusing instabilities. The exponentiation length
for these processes is 140 pm. For self-modula-
tion the modulating wavelength is 14 pm, and the
modulating frequency a tenth of the laser frequen-
cy. For self-focusing, the filament width for
fastest growth is 23 pm. Intensities of -10"W/
cm' are probably higher than those contemplated
for laser fusion applications. However, such la-
sers are presently coming into use in target ex-
periments. " The above numbers indicate that
modulations and filaments may exponentiate sig-
nificantly if the strong laser pulse lasts longer
than a few picoseconds, or if the blow-off plasma
becomes larger than a few hundred microns.
Modulations could represent a mechanism to
broaden the frequency spectrum of the incident
laser. This effect may be important because res-
onant instabilities (e.g. , stimulated Brillouin
scattering or the parametric decay instability)
can be inhibited if the driving wave is not mono-
chromatic.

A major unanswered question about relativistic
self-modulation and focusing concerns competi-
tion between these processes and other laser-
plasma instabilities. '+ ' The Raman process
has a far larger growth rate, and if it occurs it
should be dominant for v, &2+~,. Even for Np

& 2'~„strong-coupling 8rillouin scattering has
a larger growth rate than the relativistic insta-
bilities considered here. However, density gra-
dients and frequency broadening can stabilize
Raman and Brillouin scattering. At present we
see no mechanism for density-gradient stabiliza-
tion of relativistic self-modulation and focusing,
and we argue that self-modulation may itself
cause frequency broadening. The presence or
absence of these processes may ultimately de-
pend on "nonideal" effects, such as spatiaI non-
uniformity and frequency spread of the incident
laser beam.
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A theoretical treatment is presented of the quasiparticle-recombination dynamics of a
nonequilibrium superconductor. The microwave reflectivity of a superconducting film in
the presence of external pair breaking is calculated. It is shown how microwave experi-
ments may permit the separation of the effective recombination time into its intrinsic and
recombination-phonon components.

Testardi1 has shown experimentally that when
a thin superconducting film is driven normal by
intense pulsed optical radiation, the transition
displays characteristics which cannot be account-
ed for by simple lattice heating. He suggested
that excess quasiparticles created by photon-in-
duced pair breaking were responsible. Motivated
by this observation, Owen and Scalapino' investi-
gated a modified BCS model of a superconductor
in which the quasiparticle density is maintained
at a level above the thermal-equilibrium value
by an external source of dynamic pair breaking.
Among the predictions of this model are a depen-
dence of the energy gap on the excess quasiparti-
cle density, and a, first-order transition to the
normal state at a critical excess quasiparticle
density. Some of the model's predictions have
been experimentally confirmed by Parker and
Williamss using tunnel junctions irradiated with

laser light.
Some time ago, Rothwarf and Taylor4 pointed

out the crucial importance of recombination pho-
nons in the coupled quasiparticle-pair-phonon
system in a nonequilibrium superconductor. The
interpretation of nonequilibrium experiments us-
ing tunnel junctions depends on assumptions
about the behavior of these phonons in the rela-
tively complex junction structure. It would ob-
viously be desirable to test the Owen-Scalapino
model in a simple thin film, in which the pho-
nons can be accounted for with greater certainty.
The use of microwave-frequency reflection, ab-
sorption, or transmission measurements as a
probe of the quasiparticle density makes this pos-
sible. The quasiparticle density can be moni-
tored in the superconducting state in contrast to
the quasi-dc experiment of Testardi, in which
only the transition to the normal state could be
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