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lator wave functions is not crucial to the result.
A more detailed treatment of this color-symme-
try breaking effect, including the case when the
symmetry breaking is relatively small, will be
published elsewhere.
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The ultraviolet freedom of non-Abelian gauge theories is used to suggest the presence
of a new symmetry of the exact theory which is not present in finite orders of perturbation
theory. The infrared behavior of these theories is determined as a consequence of this
symmetry.

There is a distinct possibility that the strong
interactions may be described by an unbroken
non-Abelian (generalized Yang-Mills') gauge the-
ory. ' The gauge group is presumably colored
SU(3) with the gauge fields A„' in the adjoint rep-
resentation (a = 1—8) and the quark fields g in the
(triplet) fundamental representation. The quark
fields should also be ordinary SU(3) triplets or
simple (charmed) generalizations. Such a theory
is asymptotically free and so has a computable
ultraviolet behavior. ~ More importantly, the the-
ory is therefore not infrared free and so offers
a unique possibility of providing for color con-
finement. '

Because the theory is not infrared free, it has
not been possible to perform any reliable calcu-
lations which could determine what actually hap-
pens in the infrared region. The hoped for con-
finement cannot be investigated with conventional
perturbation or renormalization-group' tech-
niques. ' In this note, we shall attempt to over-
come this impasse and argue that, precisely be-
cause of the lack of infrared freedom (or the cor-
responding presence of ultraviolet freedom), ex-

act statements can be made about the infrared
behavior of the theory. Unlike conventional zero-
momentum theorems, our statements, which are
consequences of renormalization, should be valid
only in the exact theory and not classically or in
finite orders of perturbation theory. Our present
results do not answer the confinement question,
but, because they constitute hopefully exact state-
ments about the infrared behavior of non-infra-
red-free theories, they should provide new tools
for investigating this and related problems.

Our approach is as follows. We consider the
renormalized gauge field equations in the form

s'[s„A„'(x) —s.A„'(x)] = J„'(x),

where &„'(x) contains the usual Yang-Mills self-
couplings and couplings to quark fields and ghost
fields, gauge-fixing terms (we work in the gen-
eralized-Lorentz-gauge formalism), and all nec-
essary counterterms. ' Classically, or order by
order in perturbation theory, (1) possesses no
interesting symmetry besides the usual Poincare
and non-Abelian gauge invariance. Asymptotic
freedom, however, enables us to make precise

1640



VOLUME 33, NUMBER 27 PHYSICAL REVIEW LETTERS 30 DECEMBER 1974

statements about the exact source operator Z„'(x)
obtained by summing the perturbation series. '
We will argue that this exact source is invariant
under the transformation (R transformation)

A„'(x) A—„'(x)+r„',

for arbitrary constants r„', a=1-8, p, =0-3. The
exact field equations (1) are therefore invariant
to (2) and so (2) is an exact (spontaneously brok-
en) symmetry of the exact theory. Our zero-mo-
mentum theorems are the Ward-Takahashi (WT)
identities appropriate to this symmetry.

Before outlining the derivation of these results, '

D„,(q) = —(2n) - fd'x e""(0!TA„(x)A„(0)!0)

has the form

D(q') =!q'+q'11(q')) ',

11„(q)= (q„q —q q„)II(q ) (4)

This implies that the transverse part of the pho-
ton propagator

(6)

we will illustrate them in the simpler context of
conventional quantum electrodynamics (QED)."
We work in the Gupta-Bleuler Lorentz-gauge for-
malism. The invariance of the theory under the

gauge transformation"

A„(x)-A„(x)+s„A(x)

implies the conventional WT identities, the sim-
plest of which expresses the transversality of the
vacuum polarization tensor II„„(q):

but says nothing about the behavior of (6) for q' - 0. In perturbation theory, one maintains that II(0) = 0

so that (6) has the photon pole at q' = 0, but a singularity in II(q') at q' = 0 would lessen the singularity
in (6), and a pole at q' = 0,"

II(q')- -M'/q', (7)

would completely remove the singularity. Gauge invariance alone thus does not say anything about D(0)
and so the physical photon cannot be considered as a Goldstone boson arising from the spontaneous
breakdown of gauge invariance.

Suppose now that the gauge group G of QED contained the special class of gauge functions

A(x) =R(x)-=r"x„, r„=const,

under which

A„(x)-A„(x)+r„.
A simple way to determine the implications of this is to consider the product

11„"(q)D„,(q)= e(2w) 'f-d'xe""(0!TJ (x)A, (0)! 0),

(8)

(9)

(10)

where J'„(x) is the conserved electric current operator. The invariance of (10) to (8) for square-in-
tegrable A(x), together with the fact that (5) acquires the term q„A(q)A„(0) '~ under (2), implies that

q "II&,(q) =0 and hence (4). The invariance of (10) to (9), together with the fact that (5) acquires the
term r„r,6»(q) under (9), implies that TI~(q)6'(q) = 0 and hence that II(q') is less singular than (7) at
q =0, so that (6) must have a singularity at q' =0.'» It is therefore not the existence of a gauge-invar-
iance group G but the presence of (8) in G which implies the presence of a physical zero-mass excita-
tion. In conventional four-dimensional QED, R~G" and so the physical photon can be interpreted as
the Goldstone boson arising from the spontaneous breakdown of R invariance. In exactly soluble" two-
dimensional massless QED, R+G" and so there the photon can (and does) acquire a mass. The fur-
ther consequences of R invariance can best be deduced and stated by functional methods. The general
W'7 identity is

or er nr
fd»x

( )+ex„( )
4(x) —ex„—

( )
4'(x) =0,

where I'(8„4,4') is the generating functional of proper vertices. In particular, the proper n-photon
amplitude vanishes whenever any external momentum vanishes.

We return now to the non-Abelian gauge theory (1). In terms of the renormalized fields A„', P, C„
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and C2 (the C; are the ghost fields), the renormalized coupling constant g, the renormalized gauge pa-
rameter o, and the usual renormalization constants Z;, the formal expression for the source operator
1S7I 15

—J„'=(Z,/Z, )gf"'(A'"[s„A„' s„A-„'+ (Z, /Z, )g f"'A„'A„')+ s"(A„'A, '))

+ (I/Zsn)s„s+'"+ (Z, /Z~') g(Z, )yqT'$+2, f' ' s„C, C,').

The renormalization constants Z are functions of a suitable cutoff parameter E and their behavior for
large K [all that is relevant in (12)] can be exactly computed in asymptotically free theories by using
renormalization-group techniques. " The result is that the ratio Z, /Z, vanishes in all asymptotically
free theories for any choice of n':

lim [Z, (K)/Z, (K)]= 0.

(In finite orders of perturbation theory, on the contrary, Z, /Z~ is logarithmically divergent. ) When
the R transformation (2) is performed in (12), there results additional terms only of the forms

(Z, /Z~)r'B„A„, (Z, /Zs)'r'A„A„. (14)

Since s„A„and (Z, /Z, ):A': are finite field operators, the products (14) vanish because of (13). The
operator (12) is therefore formally R invariant and hence so is the field equation (1). The same is
true for the quark and ghost field equations.

At a less formal level, the source operator (12) can be expressed as the local limit of a nonlocal
field product":

J&'(x) = lim [. . . + g(1 + bg In( p ) ~f' 'A' "(x+ $)s&A „(&)+ ~ ~ ~ ], (15)

Jd'x [5r(e, . . . )/5e„'(z)] =O,

where I'(8, . . . ) is the generating functional of
proper vertices and 8„'(x) is a classical Yang-
Mills field. This implies the vanishing of the
proper n-boson amplitude whenever an external
momentum vanishes:

Before stating the consequences of these obser-
vations, we should emphasize the nonrigorous
nature of our argument for R invariance. We
have freely interchanged the R transformation
(2) and the regularization removal limit, "and
we have not taken account of the need to employ
a gauge-invariant regularization before making
the renormalization subtractions indicated in
(12).20 We unfortunately cannot check that our
procedure is legitimate in perturbation theory
since our conclusions should only be true for the
exact theory. " In this sense, the proposed R in-
variance of Yang-Mills theories is on a very dif-
ferent footing from the R invariance of QED dis-
cussed above. Note also that all our remarks re-
fer to the theory obtained by summing the per-
turbation series and not to other possible solu-
tions of the field equations. These reservations
should be kept in mind below.

The consequences of R invariance of the theo-
ries under consideration can be summarized by

(17)

In particular, the inverse photon propagator van-
ishes at q=0,

and this rules out the Schwinger mechanism (7)
in the generalized Lorentz gauges. The zero-
momentum behaviors (17) suggest that the infra-
red behavior is not as bad as is indicated in finite
orders of perturbation theory. Our analysis does
not specify the rate of vanishing in (17), but the
form of (15), as well as model calculations, "
suggests a logarithmic vanishing. Note finally
that the results (17) do not directly bear on the
existence of an S matrix. Progress in this direc-
tion would require information about the limits
q - 0 without q; —0.

where we have exhibited only a typical term. The
positive constants b and y are exactly computable the WT identity
via the renormalization group. '

p,
' is the Euclide-

an subtraction point. The R invariance of the ex-
act expression (15) is evident, as is the R non-
invariance of the expression in finite orders of
g 18
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We find it most interesting that the exact infra-
red statement (17) can be (admittedly nonrigor-
ously) deduced in asymptotically free quantum
field theories. We recall the indirect nature of
our derivation: The u)kg pjolet freedom deter-
mined the exact form of the field equation (1), as
in (15), and this form was invariant to the R
transformation (2), which implied the infrared
behaviors (17) as WT identities. Similar meth-
ods can be used to deduce exact theorems at all
momenta. ' This leads us to hope that a complete
solution to the infrared and confinement problem
in these physically interesting theories may be
attainable.
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