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Renormalization-Group Approach to the Solution of General Ising Models*
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(Received 15 May 1974)

It is shown how the renormalization-group ideas of Wilson can be applied to obtain the
complete thermodynamic functions for general Ising models. The most singular term
near the critical transition is given explicitly in terms of the renormalization-group
transformations. As an example an approximate numerical solution is given to the orig-

inal Ising model.

The fundamental renormalization-group ap-
proach of Wilson® based on Kadanoff’s intuitive
deduction? of Widom’s scaling law® has led to con-
siderable progress in understanding critical
transitions. In particular the well-known scaling
behavior and the universality of critical expo-
nents is obtained from the existence of a fixed
point and the analyticity of the renormalization
transformations. The values of these exponents

. were first calculated by Wilson and Fisher® in
the € expansion which exhibited the role of lattice
dimensionality, and have been obtained also by
other methods. Recently Niemeijer and van
Leeuwen® have shown how to implement more di-
rectly Kadanoff’s ideas using the Wilson approach
to evaluate the critical exponents and the transi-
tion temperature for Ising models. In this note
we want to show how to extend this method to ob-
tain the complete thermodynamic function for the
general Ising model in terms of the renormaliza-
tion-group transformations. The essential point
is to use the fact that the partition function of the
Ising-spin system is form invariant under the re-
normalization-group transformation only up to a
factor exp[Ng,(K)] [see Eq. (2)], where gy(K) is
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a function of the spin interaction parameter K
for N spins and is completely determined by this
transformation. We will show that the partition
function can be evaluated in terms of g,(K) for
any desired range of values of K for which the
nonlinear renormalization-group mappings are
determined, including the singular behavior on
the critical surface. Near the critical surface
we obtain the well-known power-law or logarith-
mic singularities, but including explicitly an ex-
pression for the coefficient of these singularities.
As an example, we have solved numerically our
equations for the case of a square lattice in a
four-cell approximation, and obtained the free
energy, the energy, and the specific heat as a
function of the nearest-neighbor spin coupling.

The renormalization-group transformation for
N spins

Ky' =F(K) ¢y

in the parameter space K of the generalized Is-
ing-spin lattice and the function gy(K) are deter-
mined by the invariance requirement

explH /. (K', S") + Ngy(K)] ={Z} explH (K, S)}, (2)
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where the summation is carried out over all pos-
sible configurations o for fixed values of the cell
spins s;’, and

HN(K) S) =ZaKa H St’ Si =% 1’ (3)
ica

is the generalized Ising-spin Hamiltonian (2T
=1), summed over sets a of spins as defined by
Niemeijer and van Leeuwen, but excluding the
empty set.®> This accounts for the explicit ap-
pearance of the function g,(K) on the left-hand
side of Eq. (2) which plays a special role in our
approach.

An important property of the renormalization-
group mapping, Eq. (1), is the existence of a
fixed point K *=F,(K*) where F(K*) is analytic.
Hence, to first order in K, - K, * we have

Ky = Ko* =238 T op(Kz— Kg¥), (4)

where the matrix T ,z=9F,/8Ks, evaluated at the
fixed point K,*, has right eigenvectors ¢,; with
eigenvalues X;. The condition for critical behav-
ior is the existence of eigenvalues A;>1, i=1,
2...j, while A;, ;<1 for j=1,2.... In this case
there exists a critical surface where each point
maps into the fixed point K *. In practice the re-
normalization-group transformations can be cal-
culated approximately by keeping only a finite
number of spins.®

In the thermodynamic limit N - =, the free en-
ergy per spin f(K) is given by

f(K) = lim N7 1n§exp[HN(K)] (5)
Now

and, according to Eq. (2), it satisfies the scaling
condition

AK)=LIA(K) -gK)], (6)

where L is the number of spins in a cell. Apply-
ing the renormalization transformation, Eq. (1),
to this scaling equation n times, we obtain

F) = 5 L™K ™) +h (), ("
where

h(K) =f(K™)/L" (8)
and

KMV =F (K™, K9 =K,.

In the limit n - «, we find that #,(K) -0, and Eq.
(7) then gives an infinite-series solution of the
scaling equation,® Eq. (6). However, in the pres-
ence of symmetry-breaking fields, e.g., a mag-
netic field H, the limit of 84,{K)/8 H is finite be-

low the critical temperature T, for H=0% and
gives the spontaneous magnetization.”

It can be readily seen that since g(K) is not a
constant, f(K) must be singular on the critical
surface, because a value of K which is not on
this surface will map along a trajectory which
cannot cross or be mapped onto this surface.
As K approaches close to the critical surface,
the mapping is essentially along this surface to-
wards the fixed point K* up to large values of n,
but then it turns sharply away from this surface
and maps towards a characteristic surface as-
sociated with the eigenvalues A;>1. At the fixed
point K* we have simply®

f&M=[L/(L-1)]gx™. (9)

Near the fixed point we can sum approximately
the infinite series, Eq. (7), to obtain an explicit
expansion for f(K) near its singularity. For this
purpose we introduce a set of variables ¢; asso-
ciated with each eigenvalue A;#0, 1 which deter-
mines K by a nonlinear transformation,®

Ko=Gulty, &5+ -2 )y (10)
such that the mapping of K,, Eq. (1), is given by
Ky = GeA 1 250 . - ). (11)

The critical point K * corresponds to ¢; =0 for
all 7 and the critical surface is obtained by set-
ting £; =0 for ¢ such that A;>1. In terms of these
variables we have, according to Egs. (7), (10),
and (11),

f®)= 5 L7800 A - ). (12)

As an illustration, we consider planar Ising mod-
els where ¢, and ¢, are the temperature and mag-
netic field variables near the critical transition
where A, =LY% and A,=L"® while ;<1 for ¢
+#1, 2. In this case we consider the second deriv-
ative of f(¢) with respect to ¢, and ¢,, setting ¢;
=0 for i#1, 2.

fii(g) = Z% (Kiz/L)"g,-i(hl"él, Azngz, .o -), (13)

ns=

where

f:i:(8) =8%A(2) /3L 2, gi:=9%g(8)/8¢L 2 (14)

The series given by Eq. (13) becomes clearly di-
vergent when ¢, and &, vanish. For example, in
the limit ¢, =0, £,=0, where £, <(T-T,) and &,
—H, we obtain

.. #](21nX;=1nL)/In\ )
f"““*‘%”".“?{ lg‘l- 1—1%, (15)
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where
- 08 <~ PuPrs t _8%Fs o%g o 1
gii(o) aZB> { aK‘y?(A'iz—Ak) aI(aBKB + aKaaKﬂ (pctt<pﬂl‘ ( 6)
The coefficients x;* are determined by the two solutions of the equation
© L n o n 7\.2 n
2 [gu X —gu(o)} <—2> + 25 &:(0"X) <~L> =0 (17
n=1 A’l A’i n=0 L

for positive and negative values of . |
Equation (15) gives the well-known power-law
singularity associated with scaling with a coeffi-
cient determined by Eqs. (16) and (17), which is
in general discontinuous across the critical sur-
face.
For A,’=L and i=j=1, Eq. (15) becomes®

f11(§) =_§.u@1n|§1|

Inx, (18)

corresponding to the well-known logarithmic sin-
gularity of Onsager’s solution.'® This result can
also be verified by direct substitution in Eq. (6).
To obtain the regular part £,(¢) of f(¢) near the
fixed point, we expand g(¢) in a power series in
&

go=n&alayp i, (19)
il ..
Substituting in Eq. (6), we obtain
&, . . L i i
MO =L T Togge ks (20

where terms in the sum with vanishing denomina-
tor, as in the case A,2=L, are deleted.!* Near
the fixed points K*=0 (high temperatures) and
K*=w (low temperatures) we expect no singulari-
ties in f, and the series in Eq. (20) gives the com-
plete expansion of the free energy.

In practice, the series solution for the free en-
ergy, Eq. (7), can be calculated numerically!? for
arbitrary values of K after the renormalization-
group transformations, Eq. (1), for a finite num-
ber of spins N have been obtained. For high and
low temperatures this solution approaches the
exact asymptotic limits of f provided that period-
ic boundary conditions are imposed and that the
cell clusters maintain the lattice symmetry. As
an example, we have calculated the values of f(K),
3f(K)/8K,, and K,? 8*f(K)/8K,? corresponding to
the free energy, energy, and specific heat, re-
spectively, for a square lattice along the Ising
nearest-neighbor axis — K,, in a four-cell clus-
ter approximation, N =16, which is the smallest
cluster satisfying these requirements.’® The re-
sults are shown in Fig. 1 where we have also
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drawn for comparison Onsager’s exact solution.!°
The fixed point associated with the critical tran-
sition is found at K,*=0.307, K,*=0.084, and K *
=-0.004, where K, is the next to nearest-neigh-
bor interaction, and K, is the four-spin interac-
tion. The corresponding eigenvalues are i,
=1,914, 2,=0.248 and 1,=0,137. The critical
surface intersects the Ising axis at K,°=0.420

28 T T T - T T r

24

221

20r .

R
P i

-4 7

FIG. 1. Dashed curve, Onsager's free energy;
crosses, f(Ky), free energy, Eq. (7); dash-dotted
curve, Onsager’s energy; triangles, 97 (K;)/8K;, en-
ergy from first derivative Eq. (7); solid curve, On-
sager’s specific heat; dots, K,*8%f (K,)/8K,*, specific
heat from second derivative Eq. (7).
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while the Onsager value for the critical transi-
tion is K°=1In(vV2+1) =0.440 69. The properties
of the renormalization-group mappings, Eq. (1),
and transformations, Egs. (10) and (11), have
been investigated in detail for the square’ and
the triangular!4 lattices in collaboration with Pro-
fessor J. A. Tjon, to whom we are indebted for
numerous discussions.

One of us (M.N.) would like to thank the mem-
bers of the Institute for Theoretical Physics at
the University of Utrecht for their kind hospitali-

ty.
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Photoemission Partial Yield Measurements of Unoccupied Intrinsic Surface
States for Ge(111) and GaAs(110)*
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Energy-resolved photoemission-yield spectroscopy measurements are reported for
transitions from 3d core levels to empty surface states and conduction-band states. Un-
occupied surface-state bands are observed in the band gap with peaks about 0.2 and 0.9
eV above the valence-band maxima (Ey) of Ge(111) and GaAs(110), respectively. These
surface-state bands cause the well-known Fermi-level (Ef) pinning at the surface (Ef
—Ey=0) for Ge(111) and the range of pinning (Ef —Ey =0 to 0.6 eV) for doped GaAs(110),

Intrinsic surface states, both empty and filled,
are well known to exist in or near the forbidden
gap of Group-IV and -III-V semiconductors such

as Ge and GaAs.'"® Previously, photoemission
measurements have determined the density of
filled surface states,*™® while optical® and elec-
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