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We have calculated the leading terms of the potential due to vacuum polarization about
a point nucleus, V(r) = m[e &(mr) +ao+a~(mx)+a2y(mr) ]. Our results for a~ and a2~,
to all orders in Zn, extend the previously known results which included terms only up to
(Zn) . For a ~ we confirm previous results. The new portions of a& and a&~ do not re-
move present discrepancies in muonic x-ray transition such as 5g-4f in Pb.

quantum electrodynamics predicts deviations from pure Coulombic behavior near a point charge.
The potential energy of a negative charge —e located a distance r from a point charge Ze is not given
entirely by the Coulomb expression, V(r) = -Za/r (we set 5 = c = 1). There is a correction of order
+ZAN, the Uehling potential. '' It arises from the polarization of the vacuum of virtual electrons of
mass I and is given by

V„,s(r)=- f dKe "',+, )
(v*-4m*)"*

[ -,'(lnmx+y)+ —,
' ——,

' n(m~) + (m~)'- -', n(mr)' —-' (mr)' (lnm~+@) ~O(m~)'] (2)

where y =—0.577 21 is Euler's constant.
The vacuum-polarization charge density to all orders in Zn is given by a trace of the Green's func-

tion for an electron in a Coulomb field, evaluated at two identical space-time points. The sole diver-
gence that occurs is an infinite charge renormalization in order +ZAN: The charge density away from
the origin is finite in all orders in Zn. In the only previous calculation done to all orders in Zn, Wich-
mann and Kroll~ found that the vacuum-polarization charge density included a point charge, 5Q'&s(r),
where 5Q' is a function of Za which they expressed as a double infinite sum. Proceeding from expres-
sions of Wichmann and Kroll, the potential of order o. (Zn)' has previously been obtained for the small-
distance domain":

ct Zo. '
1'„( )= -([——', &(3)+-', '--', ]+[24(3)--', '] +[-6&(3)+, '+-', ']( )'

+[ -'my+ 2 n&(3)+ 2
m ln4mx —s-71 ] (mx) +O((mr)' )] .

The work we report here is based on techniques not heretofore applied to this problem. The first
involves Fredholm determinants and simplifies the calculation of the induced point charge and the oth-
er terms in the potential with integral powers of nz~. The second is the use of Mellin-Barnes repre-
sentations of the confluent hypergeometric functions which occur in the Coulomb-Dirae Green's func-
tion. This representation provides a unified approach to the expansion in mr and simplifies especially
the calculation of the terms with nonintegral powers of m~. The details of our calculations will be
given elsewhere. 4

Our method shows the form of the full expansion of the vacuum polarization potential in ascending
powers of m~ to be

lt'(x) =m[ Q a2, , (mx) ' '+ao+Q Q a2~„+„(mx) +"],
l=p k=y n=p

where the a's are functions of Zn, and in the second sum A,, = [k' —(Zo.)']'". Although all the coeffi-
cients (save a,) can be calculated by our procedures, the terms a „a„and a» are adequate to evalu-
ate accurately the energy shifts in heavy muonic atoms. The ap term does not affect any transition en-
ergy.

Our result for the induced point charge is

5Q' = Q (4ek/v)Im[(X„- iZn)g(A. , —iZn) —lnI'(A~ —i Zn) —2 ln(A.„-iZo. )+ iZo. kg'(k) —iZa/2k],
k=1
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TABLE I. The energy shifts of the +eh and 4f7h lev-
els in muonic 'Pb, in eV. Our new results, Eqs. (12)
and (13}, replace the previous approximations, Eqs.
(14) and (15). All Uehling order terms are removed
according to Eqs. (12)-(15).

Equation
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FIG. 1. Fo as a function of (Ze) . Eo represents the
correction to the (Zo. ) ~ approxilnation to the induced
point charge, Eq. (5).
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where ((z) =d Inl'(z)/dz. This agrees with the result of Wichmann and Kroll' although they obtained a
rather differently appearing expression.

Following Wichmann and Kroll, we display 5Q' by expanding in powers of Zn:

5Q' = (e/3v)[(Zn)3[2&(3)+ -" —-' m2] —(Zn)'[ 2g (5) +&~& (3) —47m4/240] ~0((Zn)7)]

= —e[(Zn)'(0 020 9.40) + (Zn)'(0. 007 121)Ec(Zn)],

where Eo(0) =1. Our numerical results for Ec, shown in Fig. 1, are in approximate agreement with
those of Wichmann and Kroll. '

For the term in the potential of order mr we find
" 4k u' ~+0'

a, =n(Zn) Q —, Re('(X„+iZn) — „"
)k=& ~ k — ~k 2k (2~k+1

where g'(z) =d((z)/dz. Expanding in Zn yields the corresponding portions of Eqs. (2) and (3).
The next term in the potential is given by

8n(Zn) I'(-2A) cosmic
"'

dq 2q 2~e I (A. +iZne/q)
2x(2K+1) I'(2K+1) m m m q I'(1+i Zne/q)

(7)

(8)

where e'=q'-m', and where here &= A, = [1 —(Zn)']'". The integral taken literally diverges; the
upper limit "~"means that the integrand is to be expanded in powers of m /q . The terms of order
(m2/q2)o(2q/m)' and (m2/q2)'(2q/m) diverge and are to be integrated formally, dropping the contri-
bution of the upper limit. The remaining terms converge and are to be integrated over the full range
m &q &~. This prescription arises from a careful treatment of the appropriate Mellin-Barnes repre-
sentations of the Green's functions. The expansion of Eq. (8) in powers of Zn yields the correspond-
ing portions of Eqs. (2) and (3), with the Inmx term arising from expanding (mx)

At A=2, both Eqs. (7) and (8) have singularities. Moreover, both terms are then of order mx. It is
straightforward to show that the singularities cancel. The pole of a, arises from the first term in the
k sum:

a, p'"=n(Zn)2z ' Ref'(z +i W /3)(2&-—)2' = n(Zn)[z/(cosh2vV 3)2] (A. —2) ~ .
It is convenient to separate out this pole:

a~= Znnm /+n( Z)n~(a, "&+-,'[m (/cohs-', wW3)'](A —-') '},
a, ~= —-', nZn+n(Zn)'1a, ~"~ —

—,
' [v/(cosh-', ~W3)'(Z —-', ) '] .

(9)

(10)

The functions a, "& and a, ~"~ are shown in Figs. 2(a) and 2(b). They are slowly varying except for a.

singularity as Ze - 4, a singularity which cancels in the complete potential.
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FlG. 2. (a) The regular portion of the coefficient in the potential of order m(mr), a~'', as a function of (Zu) Icf.
Eq. (10)]. (b) The regular portion of the coefficient in the potential or order m(mx), a2y' g, as a function of (Ze)
[cf.Eq. (11)].

A physical system of considerable interest is muonic ' Pb. The muonic x ray associated with the
transition 5g- 4f has been the subject of considerable scrutiny' because of the discrepancy between
theory and experiment, Et& -E„&——53 +20 eV, typical of a number of muonic x-ray transitions in
heavy atoms. The effect of our new results is best seen by subtracting the Uehling piece to yield a
potential of orders (Zn)' and greater:

V, ('+)(r) =m(mr)[a, —nZn/m],

V, ('+) (r) = m( mr)' "a,~ - [- -', o.Znm(mr)'] .
The previously available result was the (Zo. )' approximation given in Eq. (3):

P,(') (r) = o. (Z n )'m 'm (mr )[-6$ (3)+, s'4+ -', m'],

V',(')(r) = o. (Zo. )sm (mr)'[ -', ln4mr+ -', y+ -', &(3) -@].

(12)

(13)

(15)

A comparison of these expressions is given in Table I. Although the modifications in going from Eq.
(14) to Eq. (12) and from Eq. (15) to Eq. (13) are large, the net effect on the x-ray transition energy
is small. Thus the discrepancy between theory and experiment for this and similar transitions is sub-

. stantially unchanged.
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