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length of the test in which the dislocation tra-
versed a distance of 40 lattice parameters. The
computer simulation determination of x(f) cannot
be distinguished, on that scale, from that shown
in Fig. 2, In another computer simulation of the
model, the dislocation was first brought to steady
conditions under an applied stress with »=0.660,
and the stress then gradually reduced. At the
time the stress reached zero, the measured dis-
location velocity was v=0,275, After that time,
it decreased very slowly so that after traversal
of 65 lattice parameters under zero stress, at
which time the computer simulation was termi-
nated, the dislocation velocity had declined only
to v=0.264. The velocity trend appeared to be
approaching v=0.25 asymptotically. We con-
clude, therefore, that the loss-free mode can be
attained in a natural manner.

It should be noted that the Peierls stress, op,
for this model, and the values of the model pa-
rameters here assumed, does not vanish. Rath-
er, for P=0.25 and y=0.35, the general theory®”
gives 0p=0.0506., where u is the shear modulus
of the crystal. Therefore, contrary to the fre-
quent agsumption,'® the fact that the dislocation
is subject to a periodic Peierls potential in its
steady motion does not inevitably give rise to ra-
diation losses, at least for the modified Frenkel-
Kontorova model studied here. Whether such
loss-free motion is possible in other models is a
subject for further investigation, but in any case
the present work demonstrates that the relation-
ship between radiation losses and the periodic
Peierls potential is not straightforward. The dy-
namic Peierls stress,! op,, for these parameters
also has a nonzero value, namely 0p;,=0.7520

X107y, Therefore the result previously stated,!
based on the local-mode approximation, that
steady dislocation motion is possible only for ¢
>0pp is incorrect for the case when one starts
with steady motion at 0> 0, and then slowly re-
duces the stress level. On the other hand, for
the case of a dislocation starting from rest in an
unstable configuration under an applied stress o,
it is necessary for o= gp, for continued motion
to occur.®
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The lattice contribution to the diamagnetic susceptibility, y s is written as a sum of
three terms, a core term y,, a Langevin-like valence-electron contribution Xps and a
Van Vleck paramagnetic term y, using a one-oxcillator model. Measurements of Xz and
dxp/dar for diamond, Si, Ge, GaAs, and GaP are presented. The model allows a sepa-
rate determination of each of the three terms and relates these terms to the symmetry
and extent of the valence-bond charge distribution,

The purpose of this Letter is to show that chemical bonding and the diamagnetism of semiconductors
are related in a simple way. A model is presented which describes the diamagnetism in terms of
three contributions: two Langevin-~like diamagnetic terms y, and y, which arise from the core and va-
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lence electrons, respectively, and a Van Vleck paramagnetic susceptibility x, which results from vir-
tual magnetic dipole transitions between the valence and conduction bands.

With the values and the temperature dependencies of the magnetic susceptibility and the dielectric
constant, this model makes it possible to determine x, and x, separately. We present measurements
and analyses of the lattice contribution to the susceptibility, x,, of diamond, Si, Ge, GaAs, and GaP.
Other contributions such as those from impurities and carriers are negligible in the temperature
range chosen. Although theoretical expressions for the remaining lattice susceptibility ¥, have been
derived!'? they are difficult to evaluate for real solids.

Magnetic susceptibility has been used for a long time as a probe of the details of chemical bonding in
molecules.® Van Vleck* has shown for molecules that the molar susceptibility can be written as

:-M 2 _M 2 |<illi|||j>|2
X sznczc§e<1’> mczvgmem*m%; E,-E; ' 1)

The first and second terms are the Langevin terms x, and x,, respectively. The third term is the Van
Vleck paramagnetic susceptibility x, arising from virtual magnetic dipole transitions between filled
and empty energy levels. Here 7 is the electron position vector, p, is the component of the magnetic
dipole operator in the field direction, and N, is Avogadro’s number.

We expect that in a semiconductor x, is a sum of core and bond susceptibilities which can be de-
scribed by Eq. (1). We approximate the Van Vleck term by a one-oscillator model with oscillator en-
ergy E,. This energy is the average energy separation of valence- and conduction-band states connect-
ed by the magnetic dipole operator. Such an approximation is made by Phillips® to describe the dielec-
tric susceptibility. He uses the Penn isotropic two-band model which gives the low-frequency dielec-
tric constant approximately as

€(0) -1 =(rw,/E,)?, (2)

where E, represents a weighted energy separation of valence- and conduction-band states connected by
the electric dipole operator and Zw, is the valence-electron plasma energy.

In general E, and E,, should be different. However, as long as the magnetic and electric dipole ma-
trix elements vary slowly with energy, E, and E, will be proportional, E,=gE, with 8 of order unity.
In accordance with Eq. (1) we then write for semiconductors

Xz == (Nge?/6mc?) C.Z_r? (%) = (8Ne®/6m c)(r*) vatence + B/BE,. (3)
e

Considering tetrahedral semiconductors in the TABLE 1. Measured values,2
following we have written y, for two atoms per
unit cell, i.e. eight valence electrons. It should
be emphasized that although x, is of the same (1076 cfnlg /mole)
form as x., it arises from charge distributed
over distances of covalent bond lengths or larger.

dy Is/dT
(10~? ¢m3/mole K)

6

B is proportional to an average interband mag- C —-11.8+0.2 —0.014+0,006
netic dipole matrix element. It is sensitive to Si -6.4+0,2 1.5+0,06
the symmetry of the chemical bonding. It is zero Ge —15.720.5 3.640.1
for spherically or cylindrically symmetric elec-
tron distributions for which u;, = ugL, is diagonal. Gads —33.3+1.0 1.2£0.05
This explains why y, is negligible for ionic ma- GaP -30,0+1.0 0.9+0,04
terials in which the ions are approximately spher-
ical. We expect B to be nearly the same for tet- 2Most of these quantities have also been measured

previously by G. A, Busch and R, Kern, Helv, Phys,
Acta 32, 25 (1959); D. K, Stevens, J. W, Clelland, J, H.
Crawford, Jr., and H. C, Schweinler, Phys. Rev. 100,

rahedral semiconductors which have the same
bond symmetry because of the following argu-

7
ment,” 1084 (1955); and E. Sonder and D, K. Stevens, Phys.
Consider the commutator Rev. 110, 1027 (1958). The data presented here are
i ith the previous
H, L) L]=HL?-2LHL +L2H. somewhat more accurate and agree wit p
Il ’ Z]’ z] : oL+ L studies except for the values of y, of GaP and dy/dT of
When one takes the expectation of this for the GaAs,
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TABLE II, Separated components of molar magnetic susceptibility,

X
(10~¢ em?/mole)

Xy
(10°% ¢m?/mole)

Xp
(10~¢ cm?/mole)

C -0.3
Si -4.6
Ge —-16.6
GaAs —-16.6
GaP -11,7

—24,7+4 13.2+4
—-39.3+6 37,5+6
-50.,3+4 51,2+4
—47.4+3 30,7+2
—46.4+3 28,1+2

ground state |s), one obtains

(sllla, L), Llls) == 225(E, ~ E) Ks LI n)I?,

where Iz) is an excited state. Evaluating the left-
hand side, where

H=P2/2m+V(r), L,=(/i)3/09,

one obtains
(slr?82v /002 |s) = 235,(E, - E,) [(s|L, In) |2,

where ¢ is the azimuthal angle. Setting E, - F,
~BE, as in Eq. (3) and using uy=pupL,/%, we find
that

B~ (Noup’/BE,)(s16°V /o ¢?|s). 4

Because E, scales with V, i.e. the bond strength,
B depends only on the symmetry of the potential
or charge density.®

The terms ¥, and x, therefore contain informa-
tion about the spatial extent and the symmetry of
the bond charge. Earlier attempts® to effect this
separation were not very successful. The tem-
perature dependence of x;, however, can be used
together with Eq. (3) and the calculated values
for . to determine x, and x, separately. We as-
sume that (#%) of the valence electrons has the
same temperature coefficient as the square of
the covalent bond length. This is reasonable for
tetrahedral semiconductors but not for materials
having a coordination smaller than four. The
temperature dependence of x, is then given by!°

dxp/dT =2ayx, - x,d InE,/dT, (5)

where a is the linear expansion coefficient and
x,,=B/BEg. The temperature dependence of the
Penn-Phillips gap F, is obtained from measure-
ments of de(0)/dT.

To test the model, measurements of the mag-
netic susceptibility and its temperature depen-
dence were performed on high-purity single-
crystal samples of diamond, Si, Ge, GaAs, and
GaP by using the Faraday technique. For the
diamond measurement the sample was composed
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of seven, %-caratgem-quality diamonds'! which
were determined by EPR to contain less than 1
part in 107 paramagnetic impurities.

The results of these measurements’? appear in
Table I. In order to compare these values, the
molar susceptibility is given counting two atoms
as one “molecule” for the elemental semiconduc-
tors. With use of these data, calculated values
for x., and literature values for E,, @, and de(0)/
dT, the quantities y, and yx, could be determined
separately as shown in Table II. It is interesting
to note that x, and x, are large compared with y,
and that these terms nearly cancel one another
in the case of Group-IV semiconductors. We
come back to this point later when we discuss re-
sults on amorphous Ge.

From yx, one obtains an average diamagnetic
valence radius

rp=( 2 N

valence

which is compared with the interatomic separa-
tion d in Table III. The ratio is the same within
experimental error for all materials measured.
This justifies our assumption of using a for the
temperature coefficient of »,. Calculations® of
X, from electron density distributions for the
case of GaAs agree well with our measurements.
This indicates that the values of Table III are
reasonable.

It seems significant that this simple model can

TABLE III. Interatomic distance d and average dia-
magnetic valence radius 7.

d 7z

A 03 2r,/d
c 1.548 1.04£0,15 1.34+0.19
si 2,346 1.3240,10 1.13+0,09
Ge 2,450 1.4840,06 1.2140.05
GaAs 2.441 1.46+0,04 1.2040.03
GaP 2.360 1.43+0,04 1.2140.03
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TABLE IV, Average magnetic matrix element.

B
(10~ eV em?®/mole)

C 1.8+0.6
Si 1.8+0.3
Ge 2.2+0.2
GaAs 1.6+0,1
GaP 1,6+0,1

explain the small negative dy;/dT of diamond.
It is due to the first term in Eq. (5). The second
term is positive because d InE,/dT <0.

The average magnetic matrix element B is
nearly the same for the materials studied as
shown in Table IV. Here we set 3=1. This
agrees with our argument which led to Eq. (4),
and which concluded that B depends more on the

charge density symmetry than on the bond strength.

The fact that diamond fits into this scheme is re-
markable because its gap E, is significantly dif-
ferent from those of the other materials.

The diamagnetic susceptibility of Ge depends
very much on whether the material is amorphous
or crystalline. Amorphous Ge is 2.7 times more
diamagnetic than crystalline Ge.'® This is a
unique occurrence. For a large number of semi-
conductors studied, for example Se, S, As,S,, and
As,Se,, the values of x are the same in the amor-
phous and crystalline state to within experimen-
tal error (a few percent). We believe that disor-
der-induced changes in bond angles and lengths
which affect the values of x, and x, will produce
a large relative change of x, particularly in Ge
where large values of x, and x, very nearly can-
cel. We are presently studying x and dyx/dT of
the other tetrahedral semiconductors in the
amorphous state. Preliminary results show that
also amorphous Si is appreciably more diamag-

netic than crystalline Si.

It appears that the magnetic susceptibility is,
like the electric susceptibility, a valuable tool
for studying chemical bonding in semiconductors.
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