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It is shown that a mode of dislocation motion exists in the modified Frenkel-Kontorova
model in which the dislocation moves at a high constant speed without exciting any lattice
waves and with no applied stress required to maintain the motion. The Peierls stress,
o-p, for the model parameters employed has the value O.

p
——0.0506', with p the shear mod-

ulus, so that this result provides an example of a. dislocation subject to a periodic Peierls
potential in its steady motion, without this fact giving rise to radiation losses.

The important role of dislocations in the plastic flow of crystalline solids is due to the high mobility
of these crystal defects. There are, however, various loss mechanisms which produce an effective
drag on a moving dislocation and an applied stress field must supply energy to it in order to maintain
its motion.

Even if one excludes consideration of all other loss mechanisms, such as those caused by dislocation
interaction with electrons, phonons, other defects, etc. , there remains the energy that is carried away
by the lattice waves generated directly by the moving dislocation itself. Various calculations' on dif-
ferent lattice models have exhibited this mode of energy loss and it has come to be regarded as an in-
herent characteristic of dislocation motion.

Here we report on a mode of dislocation motion in the modified Frenkel-Kontorova model in which
the dislocation moves at a high constant speed without exciting any lattice waves and with no applied
stress required to maintain the motion.

The model employed in these calculations is shown in Fig. 1. It differs from that originally intro-
duced by Frenkel and Kontorova' by replacement of the sinusoidal substrate potential by one that is
piecewise quadratic and it has been used in several previous studies of stationary" and moving dislo-
cations. " For a dislocation moving under an applied stress v in steady-state conditions with velocity
e, the displacement x(t) of a typical atom from the well bottom from which it began before the passage
of the dislocation satisfies the equation'

d'x/dt'=x(t+v ') —2x(t)+x(t —~ ')+E(x(t)) +o,

where E(x) is the piecewise linear force on the atom due to the substrate potential and is defined for
the range of x of interest here by the equations

—pX) —p ~X~/)

Z(x) = —q(-,' —x), ~-x-1 —~,

P(l-x), 1 —y -x- I+y.
(2)

Here we are employing units in which the lattice parameter, the atomic mass, and the longitudinal
spring constant are all unity. P is the ratio of the substrate spring constant to the longitudinal spring
constant (corresponding in the model crystal to the ratio of shear to tensile modulus), y (Fig. 1) cor-
responds to the critical shear stress of the perfect crystal, and Q = 2yP/(1 —2y). In the units em-
ployed, v, = 1, where v, is the macroscopic (i.e., long-wavelength-limit) sound velocity for the model.

We now seek a nontrivial solution to Eq. (1) with the applied stress v= 0 and, guided by computer-

FIG. 1. Modified Frenkel-Kontorova model. Hori-
zontal line separates the portions of the piecewise
qu. adratic potential with posi.tive and negative curva-
tures' ~I~ is the distance from the potential well mini-
mum to the point of change of curvature.
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simulation studies, we make the a priori assumption that it satisfies the relation x(t) = 1-x(—f), where
the origin of the time scale is chosen so that x(0) = —,. As in our previous work on this model, ' it is
convenient to employ the two-sided Laplace transform defined by

X(s) = j e "x(t) dt, (3)

and it may be shown' that

Pe '"-Qsinh(so)+s(P+Q) j"x(t)e "df
sD(s)

where

D(s) =s'+(2+P) —2 cosh(sv '),

and n &0 is defined by the relation

x(a) =1 —y.

(4)

(8)

By consideration of the inverse transform of Eq. (4) it is found that a formal solution to the problem

maybe written, for t&0, as

x(t) = 1 —Q [c;exp(s, t) +c;*exp(s,*t)],
i=1

~ ~ ~

where

j(s,, s,, n) =(s,' —s,') 'Jexp(s, u)[(s, —s,) exp(s, n) +(s,. +s,) exp( —s,.n)] —2s,.].

where the complex numbers s; are the zeros of D(s) which lie in the second quadrant of the complex
plane, excluding those that are purely imaginary, and the complex numbers c, must satisfy the infinite
set of linear equations

(P + Q) —Q cosh(s, n) + s;(P + Q) Q [c,f(s, , s,, n) +c,*f(s,, s,*, .o,) J

2s, [s, —v 'sinh(s, .v ')] (8)

Finally, the a priori symmetry condition put on
the solution and the requirement that there are
no traveling lattice waves generated both demand
that

Q,. res(X(s)e") = 0,

where the summation is carried out over all the
pur ely imaginary zeros of D(s) .

Equations (6), (8), and (9) form an infinite set
for the determination of the quantities v, n, c„
c„... . We have not examined the question of
convergence theoretically, but have considered
the approximate solutions v„, n„, c, „,. . . , c„„
obtained by truncating the infinite series in Eqs.
(7) and (8) at i, j=N and then considering only the
finite set i =1, . . . , Ã of Eqs. (8). We have car-
ried out this process explicitly for the case P
=0.25 and y=0.35 with the results v, =0.2574, v,
=0.2512, and v, =0.2509 and with corresponding-
ly close agreement between the functions x,(t),
x,(t), and x,(t). They are shown in Fig. 2 and, on
this scale, are indistinguishable. The monotonic
character of the zero-stress solution and the ab-
sence of generated lattice waves should be noted.

In order to study the stability of this solution,
a computer simulation of the model was made,
using the numerical techniques previously de-
scribed, ' with initial atom displacements and ve-
locities corresponding to the function x,(t). With
zero applied stress, the computer simulation
showed that the dislocation continued to move
with a measured velocity v =0.251+ 0.001 for the
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FIG. 2. Atomic displacement function x(t) for steady,
loss-free motion.
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length of the test in which the dislocation tra-
versed a distance of 40 lattice parameters. The
computer simulation determination of x(t) cannot
be distinguished, on that scale, from that shown
in Fig. 2. In another computer simulation of the
model, the dislocation was first brought to steady
conditions under an applied stress with e = 0.660,
and the stress then gradually reduced. At the
bme the stress reached zero, the measured dis-
location velocity was v = 0.275. After that time,
it decreased very slowly so that after traversal
of 65 lattice parameters under zero stress, at
which time the computer simulation was termi-
nated, the dislocation velocity had declined only
to v = 0.264. The velocity trend appeared to be
approaching v = 0.25 asymptotically. We con-
clude, therefore, that the loss-free mode can be
attained in a natural manner.

It should be noted that the Peierls stress, op,
for this model, and the values of the model pa-
rameters here assumed, does not vanish. Rath-
er, for P=0.25 and @=0.35, the general theory"
gives O.p=0.0506@,, where p, is the shear modulus
of the crystal. Therefore, contrary to the fre-
quent assumption, "the fact that the dislocation
is subject to a periodic Peierls potential in its
steady motion does not inevitably give rise to ra-
diation losses, at least for the modified Frenkel-
Kontorova model studied here. Whether such
loss-free motion is possible in other models is a
subject for further investigation, but in any case
the present work demonstrates that the relation-
ship between radiation losses and the periodic
Peierls potential is not straightforward. The dy-
namic Peierls stress, '

ap~, for these parameters
also has a nonzero value, namely op~= 0.7520

&10 'p. Therefore the result previously stated, '
based on the local-mode approximation, that
steady dislocation motion is possible only for o
& &pg is incorrect for the case when one starts
with steady motion at 0 & op~ and then slowly re-
duces the stress level. On the other hand, for
the case of a dislocation starting from rest in an
unstable configuration under an applied stress 0,
it is necessary for 0 &up~ for continued motion
to occur. '
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The lattice contribution to the diamagnetic susceptibility, y&, is written as a sum of
three terms, a core term g, a I angevin-like valence-electron contribution y„, and a
Van Vleck paramagnetic term g& using a one-oxcillator model. Measurements of yz and
dye/dT for diamond, Si, Ge, GaAs, and GaP are presented. The model allows a sepa-
rate determination of each of the three terms and relates these terms to the symmetry
and extent of the valence-bond charge distribution.

The purpose of this Lette»s to show that chemical bonding and the diamagnetism of semiconductors
are r elated in a simple way. A model is presented which describes the diamagnetism in terms of
three contributions: bvo Langevin-like diamagnetic terms y, and y„which arise from the core and va—


