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A new approach to strongly coupled plasmas is proposed by a scheme linking the linear
and quadratic polarizabilities through a self-consistency requirement. The ingredients
of the theory are (a) replacement of the nonequilibrium two-particle correlation function

by its velocity average; (b) the connection between the nonequilibrium two-point function
and the equilibrium three-point function; (c) the link provided by the nonlinear fluctuation-
dissipation theorem between the quadratic polarizability and the three-point function.

The equation of state and transport coefficients
of strongly coupled plasmas has been an outstand-
ing problem of plasma and many-body physics.
The problem, in brief, is to find a method for de-
termining physical characteristics of the system
in such a manner that usual perturbation expan-
sion in the "plasma parameter" y (y=x /4wn, K

is the Debye length) can be avoided when y is not
small. Such situations occur in metals and in
high-density classical plasmas, e.g. , stellar in-
teriors and laser-compressed plasmas. A pio-
neering idea was put forward by Hubbard, ' who

suggested introducing an effective interaction
shielded by the equilibrium pair correlation func-
tion. This original approach, however, met with
difficulty since it violated structural require-
ments imposed on the dielectric function by high-
frequency conductivity .and low-f requency com-
pressibility sum rules. Further progress in the
field was obtained by Singwi et al. ' who put the
approximation on a more systematic basis. The
main feature of their approach is that the dielec-
tric function is calculated through the first Bogo-
liubov-Born-Green-Kirkwood- Yvon (BBGKY)
equation in terms of the equilibrium pair correla-
tion function with self-consistency guaranteed by
application of the linear fluctuation-dissipation
theorem -(VDT). In this scheme, however, the
equally important, proper nonequilibrium part of
the two-particle correlation function is ignored.
While Singwi's theory led to substantial improve-
ments in the calculation of the pair correlation
function and satisfied the structural require-

ments of the sum rules, it nevertheless failed to
reproduce known exact lower-order (in y) per-
turbation results. A different method, not based
on a self-consistency requirement, but rather on
approximating the ternary correlation function by
a Debye-like structure, has been followed by
Ichimaru. ~ His resulting dielectric function does
satisfy both the structural requirements of the
sum rules and does reproduce the correct per-
turbation expansion.

The present Letter displays a new self-consis-
tent approach to the problem of strongly coupled
plasmas. This approach is made possible by in-
jecting into the approximation scheme a new ele-
ment, the nonlinear FDT derived earlier by the
authors. ' The essence of the nonlinear FDT is
that it connects quadratic response functions to
three-point equilibrium correlations. By further
relating the three-point equilibrium correlation
to two-point nonequilibrium correlations it is pos-
sible to formulate the problem in terms of a self-
consistent calculation for the combined set of /in-
ear and quadratic response functions. The mer-
its of this approach are the following: (i) All the
requirements listed above are satisfied; (ii) in
contrast to other approaches, no artifical assump-
tion is used concerning the structure of the equi-
librium or nonequilibrium correlation functions;
(iii) since the main approximation appears in ap-
proximating the quadratic polarizability rather
than the linear one, we expect the inaccuracy of
the scheme to be thereby reduced; (iv) the scheme
provides a full nontrivial extension, without any

1544



VOLUME 33, NUMBER 26 PHYSICAL RKVIKW LKTTKRS 23 DECEMBER 1974

further assumption, to the calculation of the dy-
namical (~-dependent) polarizability.

The result of this work is displayed in the form
of a nonlinear integral equation for the linear di-
electric function as the unknown; ultimately this
equation has to be solved numerically. The stat-
ic solution should provide information on the equa-
tion of state and possible criteria for gas-liquid
phase transitions. From the dynamical solution
one should be able to infer the structure, disper-
sion, and damping of collective modes, and their
interaction with particles.

In the following, we outline the simpler static

and more complex dynamical theory. The model
we consider is a classical electron plasma em-
bedded in a neutralizing background. The re-
strictions listed are not essential and extension
of the scheme to more general systems is possi-
ble and will be discussed elsewhere.

The perturbation of the system by a small ex-
ternal field E produces perturbation expansions
in the one- and two-particle distribution func-
tions E(1) and G(12). The wave-vector- and fre-
quency-dependent linear dielectric function, e(kru)
= 1+n(k(u), is calculated from the perturbed first
kinetic equation of the BBGKY hierarchy,

(2)O g '(q, k —q; v„v, ; u&) d'v, d'v, =e '(py ~ p-„&'(tu) —n'(k~)[1+n, V(5~;+ by ~)],

where n, and n' are the unperturbed and perturbed number densities, and where the (. . . )' denotes
averaging with respect to the first-order perturbed ensemble,

We further note that by explicitly evaluating (p(1)p(2))' with the aid of the perturbed Liouville equa-
tion, it can be expressed in terms of the equilibrium three-point correlation function (p(1)p(2)p(3)&
through

sE'(v, ) i—i(v —k ~ v)E'(k&u, v, ) —(e/m)E'(k~) ~
' = ~ Q qy(q) f g '(q, k —q; v„v, ; &u)d v„

~V~ m V 8V~ q

where p(q) =4me'/q', V is the volume of the system, E'(ku&) is the total first-order electric field, and

g(12) is the correlation component of G(12). (Prime superscripts here and in the following will label
order with respect to the external perturbation. )

The Fourier transform of the two-point correlation (p(1)p(2))' is related to g '(12) by

(py -„p-„&'((u) =
~k

((u f "dt e' '(pg -„(0)p„-(0)p y(—t))' —(py -„(0)p-(0)p y(0)&'),

where P
' is the temperature in energy units. Our principal approximation consists of replacing the

two-particle, velocity-dependent correlation function by its velocity average [to be referred to as the
"velocity average approximation" (VAA)]:

fd'v, g (x„x„v„v„t)=,' '
)

' fjd'v, ' d'v, g (x„x,; v, ', v„ t).

Equations (1), (2), and the perturbed version of (4) now combine to give

BED(v)—i(&u —k v)E'(kt, v) —(e/m)E'(kv) .
Bv

0 0 ~
QqV(V)(pZ -, p-, &,

'(~) — „- 4 (k).

(4)

Consider first the static (w =0) version of the theory. We introduce the static proper three-point func-
tion T defined by

T(q, k-q)=(2V)-'(p-, (0)px -, (0)p W(0)&'l-, ,-, -xx..
Then upon splitting the &u =0 part of (3) into its improper and proper components and by application of
the linear FDT to the former, the static version of (5) becomes

k [BE'(v)/Bv] 2 iPE(k) y(k)k ~ [BE'(v)/Bv] k ~ q
k v Vn,e'mk k'v

Equation (7) expresses the important fact that in the VAA the exact nonequilibrium tzuo-particle corre-
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lation function is replaced by the equilibrium three-particie correlation function. Then from (7) and
the nonlinear FDT, '

ikq l k —q l a (q, k —q)
4vP' e(q)e(k —q)e(k) '

for the static quadratic polarizability, n(q, k —q), one ultimately obtains the desired equation for the
static linear polarizability:

n(k) = n (k)[1+r(k)],

where n, (k) =4rrn, Pe'/k'—= Ir'/k' is its Vlasov value, and

2i ~, (k q)lk —ql n(q, k —q)
Pn,eV ~ kq e(q)&(k —q)

(9)

(Subscripts here and in the following refer to ordering in the coupling parameter y. )
Further progress now is contingent upon the approximation to be used to evaluate a(q, k —q). Var-

ious options are possible; these, however, will not be discussed here. We consider only the simplest
procedure, which is to adopt the Vlasov approximation for n(q, k —q), viz. ,

"
2m iP'n„e~

n (q, k —q) = n, (q, k —q) =-

kq k —q

(12)

we obtain the corresponding (&u c0) generalization of (9) in the form

Equations (9)—(11) constitute the final result of the static theory. The resulting integral equation fea-
turing e(k) as the unknown has a fairly simple structure. An analysis of the solutions of this equation
will be considered at a later time. '

The expression (9) for a(k) structurally satisfies the compressibility sum rule, n(k-0) =A(v'/k'),
for the k-0 limit of r(k) is found to be a bounded sum. Moreover, to lowest order in y, r(k-0) tends
to the required value' (& —1)=y/4.

Application of the linear FDT to (9) yields the corresponding equilibrium pair correlation g. In the
weak-coupling limit, its expansion in powers of y, i.e. , g=g, +g, +. . . , verifies that g, is indeed the
correct O' Neil-Rostoker' expression.

We now present results of the more general dynamical version of the approximation scheme. Intro-
ducing the dynamical proper triplet correlation function T, defined by

T(q~', k-q, ~")&(~'+~"-~) =(4«) '(p, (~')p, -,(~")p-,(-~))'I;.q ZZ, ,

n (k(u) n„(k(u)[ (- ))~ (k(u) e,(k(u) (13)

m(k&u) =
2 Q 2

—j d&u' f dm" 5, (&u —u,"—&u")T(q&u';k —q, &u")+2T(q, k —q)

[Note that r(k) = e(k)w(kcu =0).] From the dynamical nonlinear FDT, '

(14)

T(q~', k —q, cu") =
27rp e(q(u')e(k —q, (u")e(k, (u'+(u")

a(q(u', k —q, (o") a(—q, —(u', k, (u'+ u)") n(k, ~'+(u"; q —k, —(e")
&d (d (d (CO +K ') M ((8 +(d )

(1 5)

so(k&u) can then be expressed entirely in terms of linear and quadratic polarizabilities. Here again we
adopt the simplest Vlasov approximation' for the latter. Equations (13)—(15) constitute the final result
of the dynamical theory. The resulting nonlinear integral equation includes frequency integrals and is
much more involved than its static counterpart. This is a consequence of the dynamical r(k&u) =e(k~)
&&m(k&u) being structurally different from the static r(k), and is a feature not properly accounted for in
other theories. 2'3 Analysis of solutions of (13) to (15) will again be deferred to later publications.
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Concerning the high-frequency behavior ot' Eqs. (13) and (14), we find that

C0
e(kw —~) =1 — ', —

4 [k'a' —s(k)],

1 (k q)' -,n(k-q), o. (q)
Pn, ynh'V ~ q' e(k —q) &(q)

(17)

where a =3/(Pm). Equation (16) verifies the conductivity sum rule. Note that to lowest order in z,
s(k-0) = —,",yh'a'. This suggests the possibility that, for y sufficiently large, the slope of the plasma
oscillation dispersion curve changes sign, accompanied by the appearance of a low-frequency electron
sound mode.
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The Faraday rotation of small polarons is investigated. For three-site hopping the ro-
tation angle has maxima located symmetrically about the frequency at which there is a
maximum in the optical absorption. For four-site hopping, the rotation angle is found to
exhibit an anomalous change in sign. Experimentally determined parameters for rutile
(TiO&) suggest that the anomalous four-site effect is observable.

Friedman and one of the present authors have
calculated the de Hall mobility of small polarons
by using two techniques: an intuitive jump-prob-
ability appr oaeh" and a Kubo linear-response
approach. ' Here we have calculated the real part
of the antisymmetric part of the conductivity ten-
sor at nonhero frequency using the Kubo formula-
tion. In the region of low absorption this gives
the angle of rotation of the plane of polarization
of light which traverses small-polaron material
in the direction of a constant magnetic field, i.e. ,

the Faraday rotation of small polarons.
It has long been recognized that the optical ab-

sorption due to small polarons can be understood

in terms of the Franek-Condon principle. " At
the occupied site, the electron polarizes the lat-
tice in such a way that it requires an energy of
2&, (where &, is the polaron binding energy) to
make a "vertical" transition to a similar state at
another lattice site. The other sites may then be
regarded as being at an energy Sw =2K, above
the occupied site. This defines the energy levels.
The existence of these levels is exploited in the
calculation of optical properties by noting that at
frequencies comparable with the absorption fre-
quency ~, by far the largest contribution to the
antisymmetric conductivity will arise from vir-
tual transitions in which the small polaron ab-

1547


