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The new solid electrolyte pentapyridinium 18-silver iodide, (CyH;NH);Agqlys, effec—
tively allows the current-carrying Ag* ions to move in only two dimensions. Comparison
with the other solid electrolyte in the C;H;NHI-AgI system, namely (C;H;NH)Ag,l;, dem-
onstrates that three-dimensionally interconnecting diffusion pathways are more favorable

to high conductivity.

We report a new solid electrolyte in the pyri-
dinium-iodide-silver-iodide system in which the
current carriers (the Ag® ions) are forced to stay
within layers perpendicular to the hexagonal ¢
axis of the crystal. There are no paths by which
the Ag" ions can move between these layers,
which are separated by layers of (effectively)
[(CH,NH),IP* ions. As a result, the average
conductivity of the material is low. This is fur-
ther corroboration of the thesis that three-dimen-
sional connectivity is probably best for highly
conducting solid electrolytes.

There are two compounds in the system of pyri-
dinium iodide and silver iodide (PyI-Agl) which
are now known to be solid electrolytes. The rela-
tion of the conductivity-versus-temperature be-
havior to the crystal structure and Ag*-ion site
distribution of (C,H;NH)AgI; has been previously
reported.’ (C H,NH)Ag.L, is a three-dimensional
solid electrolyte and has a room-temperature
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average conductivity of 0.077 (2 cm)™!, almost

an order of magnitude higher than that, 0.008

(% em)™!, of (C;H,NH);Ag,,L,s, the two-dimension-
al solid electrolyte (Fig. 1).

Figure 1(a) is a top view of the iodide-ion ar-
rangement in the crystal (space group, P82m;
a=13.62, c=12.58 A, Z=1) of Py,Ag,,I,..2 The
paths for the Ag™* ions are shown in Fig. 1(b) and
result from the sharing of faces of iodide tetra-
hedra. Figure 1(c), which is a side view of the
structure, illustrates clearly how the Ag® ions
are constrained to move between layers of (ef-
fectively) [(CsH,NH),I]?* ions. There are no paths
for Ag*-ion diffusion crossing these layers [see
also Fig. 1(d)]. Two-fifths of the (CsH,NH)" ions
are stacked along the hexagonal ¢ axes.

For comparison, a top view of PyAg.I; is shown
in Fig. 2. This crystal (space group, P6/mcc,
a=12.03, ¢=7.43 A, Z =2) has three-dimensional
pathways for Ag*-ion diffusion. (These pathways
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FIG. 1. (a) Top view of iodide-ion arrangement is Pys;Agysl,s. The pyridinium ions (stippled) on the hexagonal
axes are also shown. (b) Top view of Ag*-ion paths in Py;Agiglos. The equilibrium Ag*-ion sites (located at or
near iodide tetrahedra centers) are shown. A cross indicates a connection between upper and lower halves of the
Ag™ path network within the conducting layer. See also (d). (c) Side view of the iodide arrangement in PyyAg;glys.
The pyridinium ions (stippled) in the +Lc levels of the unit cell are shown. These together with the I" ions at
(0, 0, 1) block movement of Ag* ions in the c-axis direction. (d) Side view of the Ag*-ion paths in Py;Agslys.

are therefore more difficult to visualize.) The
(C,H,NH)" ions are all stacked along the hexagon-
al ¢ axes. Details on pathways in PyAg.I; have
already been given elsewhere.!

PyAg.I; has a transition at 50°C from a region
of low disorder to one of high disorder.! In the
higher-temperature region, %,, the enthalpy of
activation of motion, is 0.21 eV. This is the val-
ue of %,, found between room temperature and
100°C for Py Ag,,I,..2 At 55°C, the (average)
specific conductivities of PyAg.I; and Py ;Ag,; I,
are 0.29 and 0.015 (2 cm)™?, respectively, differ-
ing by a factor of 19.

A strict comparison of conductivities cannot be
made [except for isostructural compounds, e.g.,
RbAg,L, ** KAgI,, and (NH,)Ag,I;, in which case
nothing really new is learned] because the crys-
tal structures are so different. Py Ag,.I,; has
seven crystallographically nonequivalent sets of
equilibrium sites for the Ag® ions, PyAg.I; only
three; the former contains only face-sharing
tetrahedra, the latter both octahedra and tetra-
hedra sharing faces with each other and among
themselves but in a very different manner from
that in Py Ag,,I,s. The respective Ag*-ion con-
centrations® (0.89 and 1.07)X10%2 ¢cm ™3 are quite
different as are the Ag*-ion equilibrium-site
concentrations® (2.72 and 3.65)X10%2 ¢cm™. On

O-I' O-Aa+

FIG. 2. Top view of the crystal structure in PyAg:l,
at —30°C. As temperature increases, Ag* ions in-
creasingly move into the tetrahedra which are empty
in this figure. (From Ref. 1.)

1485



VoLuME 33, NUMBER 25

PHYSICAL REVIEW LETTERS

16 DECEMBER 1974

the other hand, the two-dimensional solid elec-
trolyte implies lower concentrations of Ag* ions
and equilibrium sites, simply because it must
contain ions or atoms which bdlock the motions of
the current carriers in one of the crystal dimen-
sions.

It can readily be shown? that the total volume
of the crystal occupied by the pathways them-
selves is lower for the two-dimensional solid
electrolyte than for any of the three-dimensional
solid electrolytes, (C,H,NH)Ag,I,, RbAg,,
[(CH,),N],Ag,,1,;, whose structures®*” have been
determined. Both the carrier concentrations and
the conductivities of each of these three-dimen-
sional solid electrolytes are higher than those of
Py,Ag,,L,;. This implies that those three-dimen-
sional solid electrolytes that have lower conduc-
tivities than Py Ag,;I,s will have lower carrier
concentrations, lower volume fractions occupied
by the conducting pathways, and probably more
complex pathways.

Sodium B-alumina, a material which is also a
two-dimensional solid electrolyte, does not at-
tain a high conductivity until relatively high tem-
perature; at 100°C, for example? o, is 0.077
(2 cm)™! [note that Whittingham and Huggins® re-
port 0,=0,0382 (R cm™)] ; for Py,Ag,,l,, it is'®
0.05 (£ cm)™1.

The results and comparisons given here demon-
strate the high probability that three-dimensional
pathways for diffusion of the ionic current carri-
ers are most favorable for high-conductivity sol-
id electrolytes. It is to be emphasized that sim-
plicity and numerous interconnections of these
pathways enhance the conductivity. {For exam-
ple, compare the crystal structures of RbAg,I*

with those of [(CH,),N] I,;° and of the two

compounds of pyr1d1mum J}
Crystals of Py Ag,,l,, were grown by G. P.

Espinosa. Measurements of average specific

conductivity were made by S. A. Wilber.
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FIG. 1. (a) Top view of iodide-ion arrangement is PysAgqglos. The pyridinium ions (stippled) on the hexagonal
axes are also shown. (b) Top view of Ag*-ion paths in Py;Agyglss. The equilibrium Ag*-ion sites (located at or
near iodide tetrahedra centers) are shown. A cross indicates a connection between upper and lower halves of the
Ag* path network within the conducting layer. See also (d). (c) Side view of the iodide arrangement in Py;Agsl,s.
The pyridinium ions (stippled) in the + } ¢ levels of the unit cell are shown. These together with the I ions at
+(0,0,%) block movement of Ag* ions in the c-axis direction, (d) Side view of the Ag*-ion paths in PysAgglys.




