and E. Burstein, ibid., p. 739.

⁵ We used optical constants of GaAs from the following authors: H. R. Philipp and H. Ehrenreich, Phys. Rev. <u>129</u>, 1550 (1963); M. D. Sturge, Phys. Rev. <u>127</u>, 768 (1962).

⁶R. Loudon, Advan. Phys. <u>13</u>, 423 (1964).

⁷Equation (1) is equivalent to the zeroes of the longitudinal dielectric function $\epsilon_T(q,\omega)$. This expression is also obtained by determining the poles of the phonon propagator: See for instance G. Mahan, in *Polarons in Ionic Crystals and Polar Semiconductors*, edited by J. T. Devreese (North-Holland, Amsterdam, 1972), p. 553.

⁸J. Lindhard, Kgl. Dan. Vidensk. Selsk., Mat.-Fys. Medd. <u>28</u>, No. 8 (1954); see also D. Pines, *Elementary Excitations in Solid* (Benjamin, New York, 1964), p. <u>1</u>43.

 ${}^{9}L_{-}(q)$ mode was discussed by Cowley and Dolling in order to explain the dispersion curves of the LO modes in PbTe with electron density $(1-3) \times 10^{19}$ cm⁻³: R. A. Cowley and G. Dolling, Phys. Rev. Lett. <u>14</u>, 549 (1965). The data had been obtained by Cochran from neutronscattering experiments: W. Cochran, Phys. Lett. 13, 193 (1964). It should be noted that they used a static dielectric constant, $\epsilon_e(q, 0)$ in Eq. (1), with a good approximation; such is not true in our GaAs system. Moreover, neutron scattering is not useful in our system, since the wave-number resolution is more than a factor of 10 inferior to that in the present experiment in spite of the evanescent light.

¹⁰M. Cardona, Phys. Rev. <u>121</u>, 752 (1961).

¹¹D. L. Mills, A. A. Maradudin, and E. Burstein, Phys. Rev. Lett. <u>21</u>, 1178 (1968); M. Inoue and T. Moriya, J. Phys. Soc. Jpn. 29, 117 (1970).

¹²C. A. Mead and W. G. Spitzer, Phys. Rev. <u>134</u>, A713 (1964).

¹³D. J. Evans, S. Ushioda, and J. D. McMullen, Phys. Rev. Lett. <u>31</u>, 369 (1973).

¹⁴R. Tsu, H. Kawamura, and L. Esaki, Solid State Commun. <u>15</u>, 321 (1974).

¹⁵Note that very recently Yu and Shen also used a similar method to study dispersive Raman methods in Cu_2O : P. Y. Yu and Y. R. Shen, Phys. Rev. Lett. <u>32</u>, 939 (1974).

Pentapyridinium 18-Silver Iodide, a "Two-Dimensional" Solid Electrolyte*

S. Geller and P. M. Skarstad

Department of Electrical Engineering, University of Colorado, Boulder, Colorado 80302 (Received 2 July 1974)

The new solid electrolyte pentapyridinium 18-silver iodide, $(C_5H_5NH)_5Ag_{18}I_{23}$, effectively allows the current-carrying Ag⁺ ions to move in only two dimensions. Comparison with the other solid electrolyte in the C_5H_5NHI -AgI system, namely $(C_5H_5NH)Ag_5I_6$, demonstrates that three-dimensionally interconnecting diffusion pathways are more favorable to high conductivity.

We report a new solid electrolyte in the pyridinium-iodide-silver-iodide system in which the current carriers (the Ag⁺ ions) are forced to stay within layers perpendicular to the hexagonal caxis of the crystal. There are no paths by which the Ag⁺ ions can move between these layers, which are separated by layers of (effectively) $[(C_5H_5NH)_3I]^{2+}$ ions. As a result, the average conductivity of the material is low. This is further corroboration of the thesis that three-dimensional connectivity is probably best for highly conducting solid electrolytes.

There are two compounds in the system of pyridinium iodide and silver iodide (PyI-AgI) which are now known to be solid electrolytes. The relation of the conductivity-versus-temperature behavior to the crystal structure and Ag⁺-ion site distribution of $(C_5H_5NH)Ag_5I_6$ has been previously reported.¹ (C_5H_5NH)Ag₅I₆ is a three-dimensional solid electrolyte and has a room-temperature

average conductivity of 0.077 (Ω cm)⁻¹, almost an order of magnitude higher than that, 0.008 (Ω cm)⁻¹, of (C₅H₅NH)₅Ag₁₈I₂₃, the two-dimensional solid electrolyte (Fig. 1).

Figure 1(a) is a top view of the iodide-ion arrangement in the crystal (space group, $P\overline{6}2m$; a = 13.62, c = 12.58 Å, Z = 1) of $Py_5Ag_{18}I_{23}$.² The paths for the Ag⁺ ions are shown in Fig. 1(b) and result from the sharing of faces of iodide tetrahedra. Figure 1(c), which is a side view of the structure, illustrates clearly how the Ag⁺ ions are constrained to move between layers of (effectively) $[(C_5H_5NH)_3I]^{2+}$ ions. There are no paths for Ag⁺-ion diffusion crossing these layers [see also Fig. 1(d)]. Two-fifths of the $(C_5H_5NH)^+$ ions are stacked along the hexagonal c axes.

For comparison, a top view of $PyAg_5I_6$ is shown in Fig. 2. This crystal (space group, P6/mcc, a=12.03, c=7.43 Å, Z=2) has three-dimensional pathways for Ag⁺-ion diffusion. (These pathways

FIG. 1. (a) Top view of iodide-ion arrangement is $Py_5Ag_{18}I_{23}$. The pyridinium ions (stippled) on the hexagonal axes are also shown. (b) Top view of Ag^+ -ion paths in $Py_5Ag_{18}I_{23}$. The equilibrium Ag^+ -ion sites (located at or near iodide tetrahedra centers) are shown. A cross indicates a connection between upper and lower halves of the Ag^+ path network within the conducting layer. See also (d). (c) Side view of the iodide arrangement in $Py_5Ag_{18}I_{23}$. The pyridinium ions (stippled) in the $\pm \frac{1}{2}c$ levels of the unit cell are shown. These together with the I⁻ ions at $\pm (0, 0, \frac{1}{2})$ block movement of Ag^+ ions in the *c*-axis direction. (d) Side view of the Ag^+ -ion paths in $Py_5Ag_{18}I_{23}$.

are therefore more difficult to visualize.) The $(C_5H_5NH)^+$ ions are *all* stacked along the hexagonal *c* axes. Details on pathways in $PyAg_5I_6$ have already been given elsewhere.¹

PyAg₅I₆ has a transition at 50°C from a region of low disorder to one of high disorder.¹ In the higher-temperature region, h_m , the enthalpy of activation of motion, is 0.21 eV. This is the value of h_m found between room temperature and 100°C for Py₅Ag₁₈I₂₃.² At 55°C, the (average) specific conductivities of PyAg₅I₆ and Py₅Ag₁₈I₂₃ are 0.29 and 0.015 (Ω cm)⁻¹, respectively, differing by a factor of 19.

A strict comparison of conductivities cannot be made [except for isostructural compounds, e.g., RbAg₄I₅,^{3,4} KAg₄I₅, and (NH₄)Ag₄I₅, in which case nothing really new is learned] because the crystal structures are so different. Py₅Ag₁₈I₂₃ has seven crystallographically nonequivalent sets of equilibrium sites for the Ag⁺ ions, PyAg₅I₆ only three; the former contains only face-sharing tetrahedra, the latter both octahedra and tetrahedra sharing faces with each other and among themselves but in a very different manner from that in Py₅Ag₁₈I₂₃. The respective Ag⁺-ion concentrations⁵ (0.89 and 1.07)×10²² cm⁻³ are quite different as are the Ag⁺-ion equilibrium-site concentrations⁶ (2.72 and 3.65)×10²² cm⁻³. On

FIG. 2. Top view of the crystal structure in $PyAg_5I_6$ at $-30^{\circ}C$. As temperature increases, Ag^+ ions increasingly move into the tetrahedra which are empty in this figure. (From Ref. 1.)

the other hand, the two-dimensional solid electrolyte *implies* lower concentrations of Ag^+ ions and equilibrium sites, simply because it must contain ions or atoms which *block* the motions of the current carriers in one of the crystal dimensions.

It can readily be shown² that the total volume of the crystal occupied by the pathways themselves is lower for the two-dimensional solid electrolyte than for any of the three-dimensional solid electrolytes, $(C_5H_5NH)Ag_5I_5$, $RbAg_4I_5$, $[(CH_3)_4N]_2Ag_{13}I_{15}$, whose structures^{1,4,6,7} have been determined. Both the carrier concentrations and the conductivities of each of these three-dimensional solid electrolytes are higher than those of $Py_5Ag_{18}I_{23}$. This implies that those three-dimensional solid electrolytes that have lower conductivities than $Py_5Ag_{18}I_{23}$ will have lower carrier concentrations, lower volume fractions occupied by the conducting pathways, and probably more complex pathways.

Sodium β -alumina, a material which is also a two-dimensional solid electrolyte, does not attain a high conductivity until relatively high temperature; at 100°C, for example,⁸ σ_1 is 0.077 (Ω cm)⁻¹ [note that Whittingham and Huggins⁹ report $\sigma_1 = 0.0382$ (Ω cm⁻¹)]; for Py₅Ag₁₈I₂₃ it is¹⁰ 0.05 (Ω cm)⁻¹.

The results and comparisons given here demonstrate the high probability that three-dimensional pathways for diffusion of the ionic current carriers are most favorable for high-conductivity solid electrolytes. It is to be emphasized that simplicity and numerous interconnections of these pathways enhance the conductivity. {For example, compare the crystal structures of $RbAg_{a}I_{5}^{-4}$

with those of $[\,(C\,H_3)_4N\,]_2Ag_{13}I_{15}^{~9}$ and of the two compounds of pyridinium. }

Crystals of $Py_5Ag_{18}I_{23}$ were grown by G. P. Espinosa. Measurements of average specific conductivity were made by S. A. Wilber.

*Work supported by the National Science Foundation under Grant No. GH37102.

¹S. Geller and B. B. Owens, J. Phys. Chem. Solids <u>33</u>, 1241 (1972); S. Geller, Science <u>176</u>, 1016 (1972).

²Details on the crystal-structure determination and measurements of conductivity and further discussion thereof are to be published.

³B. B. Owens and G. R. Argue, Science <u>157</u>, 308 (1967).

⁴S. Geller, Science 157, 316 (1967).

⁵It should be emphasized that in $Py_5Ag_{18}I_{23}$, as well as in all other AgI-based solid electrolytes for which accurate determinations have been made, the equilibrium distribution of Ag⁺ ions over crystallographically nonequivalent sites is markedly nonuniform.

⁶These are the estimated values at 55°C. The lattice constants of $Py_5Ag_{18}I_{23}$ have not been measured at this temperature, but were assumed to increase by the same factor as those of $PyAg_5I_6$ which have been measured (Ref. 1). The 55°C concentrations are actually only about 1% lower than the room-temperature values. ⁷S. Geller and M. D. Lind, J. Chem. Phys. <u>52</u>, 5854 (1970).

⁸A. Imai and M. Harata, J. Electrochem. Soc. <u>117</u>, 117 (1970). For a review, see J. T. Kummer, in *Progress in Solid State Chemistry*, edited by H. Reiss and J. O. McCaldin (Pergamon, Oxford, England, 1972), Vol. 7, pp. 141-176.

⁹M. S. Whittingham and R. A. Huggins, J. Chem. Phys. 54, 414 (1971).

 $^{10} \rm Only~\langle\sigma\rangle$ of $\rm Py_5Ag_{18}I_{23}$ was measured, from which $\sigma_1 = 1.5\,\langle\sigma\rangle$.

FIG. 1. (a) Top view of iodide-ion arrangement is $Py_5Ag_{18}I_{23}$. The pyridinium ions (stippled) on the hexagonal axes are also shown. (b) Top view of Ag^+ -ion paths in $Py_5Ag_{18}I_{23}$. The equilibrium Ag^+ -ion sites (located at or near iodide tetrahedra centers) are shown. A cross indicates a connection between upper and lower halves of the Ag^+ path network within the conducting layer. See also (d). (c) Side view of the iodide arrangement in $Py_5Ag_{18}I_{23}$. The pyridinium ions (stippled) in the $\pm \frac{1}{2}c$ levels of the unit cell are shown. These together with the I⁻ ions at $\pm (0, 0, \frac{1}{2})$ block movement of Ag^+ ions in the *c*-axis direction. (d) Side view of the Ag^+ -ion paths in $Py_5Ag_{18}I_{23}$.