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'Hp A and the rather sudden appearance of good
quality ringing in 'He B only very near to T, re-
flect the known flow properties of the two phas-
es." The chemical potential differences in space
produced by ~ in our rather inhomogeneous
geometry are comparable to those due to AT in
heat-flow experiments which drive 'He A super-
critical over a wide temperature range in 'He A,
and 'He B supercritieal only very near T, . The
tendency to "stir" the system by the flow of mag-
netization supercurrents"' is thus inhibited in
'He A but not inhibited in 'He B except very near
T, . Experiments to test this possibility are now
being considered.
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We obtain solutions describing stationary one-dimensional propagation of a coupled
nonlinear electron-plasma wave and a nonlinear ion-acoustic wave. These waves have
amplitudes linearly proportional to one another, and propagate with approximately the
ion-acoustic velocity in the form of periodic wave trains, including solitary waves as
a special case.

Nonlinear stationary propagation of plasma
waves has been investigated extensively in re-
cent years. ' ' One-dimensional propagation of
small- but finite-amplitude ion-acoustic waves in
a collisionless cold-ion plasma is described by
a Korteweg-deVries equation, ' and the theoreti-
cal prediction of steepening and soliton formation
has been confirmed by experiments. ' A long-
wavelength electron-plasma wave obeys a non-
linear Schrodinger equation. ' Its stationary solu-

tions in the one-dimensional case include enve-
lope soliton, periodic wave train, and finite-am-
plitude plane wave. The latter is subject to a
modulational instability under certain conditions.

In this paper, we present some special solu-
tions which describe coupled, stationary, one-
dimensional propagation of a nonlinear electron
wave and a nonlinear ion wave. The basic equa-
tions are the SchrMdinger equation for the elec-
tron wave, with a potential proportional to the
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ion-density perturbation, and the cold-ion fluid
equations for the ion wave, supplemented by the
electron-pressure-balance equation. Our solu-
tions have the form of periodic wave trains, in-
cluding solitary waves as a special case, and
have the following properties: (i) Both electron
and ion waves move with a group velocity very
close to the ion-acoustic velocity g„and (ii) the
amplitudes of the two waves are proportional to
each other.

Our solution appears to be of particular im-
portance in the nonlinear stage of parametric in-
stabilities due to an electron-plasma wave acting
as the pump. The basic physical mechanism in-
volved is the same as for the oscillating two-
stream anal modulational instabilities. Namely,
the ponderomotive force associated with the elec-
tron wave induces an ion-density perturbation
which in turn traps the electron wave. The dif-
ference lies in the consideration of the dynamical
and resonantly enhanced ion response to the
ponderomotive force. In the usual linear stability
theories, the ion response is assumed to be sta-
tic and hence is very small, being of second
order in the pump amplitude. In our case, the
ion perturbation moves with the ion-acoustic
speed while trapping the electron wave, and
thereby the ion response to the ponderomotive
force is resonantly enhanced, becoming of first
order in the pump amplitude and hence nonlinear.
The importance of such a resonance effect in the
modulational instability has been pointed out by
Hasegawa' and our solution can be regarded as
describing a final nonlinear stage of his stimulat-
ed modulational instability.

The following equation gives an adequate de-
scription of one-dimensional propagation of a
small- but finite-amplitude, long-wavelength
electr on-plasma wave":

ue 8 28~e+ 2 1+8ne 02 e g+2 Pe n e
0

where u„v„~~„n„and 5n, are, respectively,
the fluid velocity, thermal velocity, plasma fre-
quency, average density, and low-frequency den-
sity perturbation of the electron. We write

u, (x, t) =u, (x, t)e ' o'+u, *(x, t)e' o',

and assume that w0 —- ~~, and u, is slowly varying
in time. We then neglect 8 u, /8 t' and approxi-
mate ~0' —~~,

' by 2~~,&, where &= ~0 —~~,.
From now on, we use co~,

' and AD = v, /&u~, as
units of time and length and denote the dimension-
less variables u, /v„L/&o~„and 6n, /no simply

by u„h, and 5n, . Equation (1) then becomes

i Bu, /8 t+ —,
' 8'u, /Bx'+ (a ——,

'
On, )u, = 0. (2)

', 8'w-($)/8$'+ [6 ,'v—((—)]tv($)=0, (4)

where $ =x —x, —Vt and we put 5n, = v($) which is
also assumed to be stationary.

For a low-frequency perturbation, we can ne-
glect the electron inertia, , obtaining from the
electron equation of motion

8 lu, l'/Bx = (8/Bx) [y —ln(1+ 5n, )],

where q is the low-frequency potential measured
in units of T/e, T being the electron temperature
and —e the electron charge. The left-hand side
describes the ponderomotive force. We combine
this equation with the ion equations of continuity
and motion,

'8 8n;/8 t+ (8 /Bx)[(1+ 5n;)u;) = 0,

EBu;/'8 t + u; Bu; /8 x + 8 cp /8 x = 0,

and the Poisson equation,

8'y/Bx'= (8n, —an;),

(7)

(8)

where e' is the electron-to-ion mass ratio, Qg,.

the ion-density perturbation normalized by n„
and u,. the ion fluid velocity normalized by P,
= cv, . The ion temperature is neglected in (7).
Since we are interested in the stationary solution
moving with velocity V, we can replace 8/Bt by
—VB/8$ and 8/Bx by 8/8$.

If we make the linear approximation, we obtain
from (6) and (7),

5n; = eu, /V = e'p/V'.

If in addition we assume local charge neutrality,
6n, =8n, , we get from (5) and (9)

5n, = lu, I'(V'/e' —1)-'. (10)

Substitution of (10) into (2) yields the usual non-
linear Schrodinger equation for the long-wave-
length electron wave. It is modulationally un-
stable when the group velocity is subsonic (i.e.,

As will be shown later, 5n, depends only on the
amplitude of u, and not on its phase. Then, if
u, =zo(x, t) is a solution of (2), any function pro-
duced by the following transformation is also a
solution:

ut(x-xo —Vt, t) exp(3iVx , iV-'-t+i8),

where V, x„and 9 are arbitrary parameters.
Keeping this in mind, we look for a stationary
solution, zo($), which satisfies
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The linear approximation breaks down if V is very close to &. In order to derive an appropriate
nonlinear equation, we differentiate (8) with respect to $ and add the result to the sum of (7) and e/V
times (6). Using (5) and keeping the terms up to second order in 5n„one obtains

(e/8$)((e/V)[(1- V'/e')u;+ 5n,u, ]+ ~& + I",I' —2(5n,)'+ 8'y/8$'] = 0.

This equation contains only small terms, either nonlinear or linear with higher derivative or small
coefficient 1 —V'/e'. One ean therefore use the linear relations (9) as well as the local charge neutrsl-
ity, 5n, =On, =v($). Also, V/e may be replaced by unity except for the term V —e. Equation (11) can
then be reduced to the form

82

8/2 t
— —2A,v+ v'+ iw i'+ W = 0 (12)'

where we replaced lu, l' by Iwl', X is the excess Mach number, X =(V —e)/e, and W is the integration
constant. Equations (4) and (12) are our basic equations.

We expect a solution for which leal and Ivl are of comparable order. It is then natural to assume the
form

(w i'= a+ bv +cv'.

Equations (12) with (13) have a general solution expressible in terms of Jacobi's elliptic function

cn(n$; k)":
v =v, +Acn'(n$; k),

(13)

(14)

(15)

where v, is determined by the condition that the spatial average of v should vanish,

v, = —[A/2nK(k)] J dx en'(x; k),
0

with K(k) being the complete elliptic integral of the first kind. The other constants are to be deter-
mined such that the coefficient of each power of cn'(n]i k) vanishes in (12). There are three such re-
lations.

Our next procedure is to separate so into amplitude and phase by writing se =R'~e'; since v, as a
solution of (13), is a function of R only, one can easily find two integrals of (4) as

Rd@'/d$ =M= const,

R [(dR/d$)'+-', (&+ b/4c)R' —(R/Qc')(b+ 2cv)'+ 4M']= 6= const.

(16)

(17)

Substituting (14) into (13) and then into (17) gives an algebraic equation for cn'(o. $; k) in fifth power.
Setting the coefficient of each power equal to zero, we get six relations, of which only five are found
to be independent. For a given value of 4, there are twelve independent parameters: a, b, c, A, n,
k, A. , W, M, E, x„and 8 or 4(( =0). Of these, we can determine only eight parameters, four being
left free to be chosen.

Particularly simple solutions are obtained in the case M =0, i.e., dC /d$ = 0. In this case, we find a
solution in the form

w = Bcn(n) i k)sn(n$; k) (18)

with

A = —18k n', B= (432)'ik'n', cI =3(5k' —4) '(2vo —6),

k' —1= [(vo —2A. )v, + W]/2An', —X+v, = 2n (1+4k').

Clearly, IAI and IBI are of the same order, so are iw I and Ivl. The general form of (14) and (18) de-
scribes a periodic wave train with three parameters, 5, x„and 0, being left free to be chosen. In the
special case in which k'=1, the period of the wave train becomes infinite and the solution is reduced
to a solitary wave. In this case, K-~ and hence v0-0, so that 8' must be zero. The explicit form of
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the solution is

v($) = 12' sech'[( —2b. /3)' ']],
m(() = (192)' '6 sech[(- 2b, /3)' '] ]tanh[(- 2A/3)' '$].

Since 6 has to be negative, this solution can ex-
ist only in the overdense region (+, & &~). The
density perturbation v($) is negative, implying a
density depletion, but is of the same order as
lao(g)l. Since Iv(0)l is 12 times as large as I b, l,
the plasma is locally underdense and the electron
wave is trapped in that region. The excess Mach
number A. is negative, i.e., subsonic, and is giv-
en by 206,/3. Whereas the ion-density perturba-
tion is symmetric around $ = 0, the electron wave
is antisymmetric and shows a phase jump at $
=0. For given 6, the only free parameters are
the initial position xp and the initial phase 0, all
the other parameters being uniquely determined
by h.

Let us finally discuss the effect of Landau
damping. First, the ion Landau damping due to
a finite ion temperature prevents a sharp reso-
nance at V=(:,/v, = e, IXI (= I V —el) becoming at
least of order v;/cu„where v,. and &u, are the
damping rate and the frequency of the ion-acous-
tic wave. Qn the other hand, a large ion-density
perturbation (of order Ivl- lu I) predicted by the
present theory assumes }A.} to be of order Iso } or
less; otherwise, }v} becomes much smaller, be-
ing of order }so }'. This implies that in the case
when Itv I acts as a pump the ion Landau damping
brings in a threshold ( Itol& v,./+, ) for the occur-
rence of a large ion-density perturbation. Sec-
ondly, the Landau damping of the electron wave
will cut down the large-wave-number components
and thereby will tend to smooth the perturbation.
Finally, a large ion-density perturbation will
benefit the ion heating as compared with the usual

(19)

(20)

parametric instabilities where only electrons are
selectively heated. " However, this ion heating
will eventually destroy the present solution by
increasing the threshold.
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