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these conditions is quite negligible, the phenome-
non probably arises from some modification of
the nucleation mechanism itself. This cannot be
occurring through the "temperature" of the pulse
being above ambient because v is found to be in-
dependent of io although it remains possible, of
course, that the nucleation process for an individ-
ual ion is perturbed by the bunch of rotons which
it has itself created and whose density presum-
ably increases with I'. Our results would seem
to favor models" in which the vortex ring is
formed initially in a symmetrical position around
the ion which, for small E, will subsequently
move sideways and become trapped; and to weigh
against models" in which a vortex loop is gradu-
ally paid out from the ion, which is therefore al-
ways trapped.
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A new model of electron Qow in high-voltage diodes and superpinch formation is pre-
sented. The relativistic cold-fluid-Maxwell equations are reduced, under certain assump-
tions, to one equation. The model is based on the solution for the electron flow in large
aspect-ratio diodes and the inclusion of cathode and anode plasmas. The anode plasma
is assumed to be a field-free region. Results are compared to the parapotential-flow
model.

The behavior of relativistic electron flow inside
high-voltage (-1 MV) diodes is important for ob-
taining extremely high current densities' ' and
for applications to controlled thermonuclear fu-
sion experiments. ' The strong pinching observed
experimentally' ' on the anode surface has moti-
vated the theoretical investigation and modeling
of the so-called superpinch. The parapotential-
flow model" predicts sealing laws of diode im-

pedanee but is unable to treat electron flow near
the cathode or the anode. The metapotential-flow
model' contains the effects of orbit crossings but
relies sensitively on anode plasma dynamics and/
or strong plasma bias currents for superpinch
formation.

In the focused-flow model presented in this
work we treat the electrons within the framework
of the steady-state (6/6t = 0) relativistic-fluid-
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v ~ (nu) =0,

u ~ Vp =e(E+u xB/c), (2)

(3)

(4)

V ~ E =4~en, E = —Vy,

V ~ B = 0, V xB = 4vJ/c = 4venu/c,

p = mu, m = m, / [1—(u/c) ']'~2,
(5)

y' = 1+p'/m, 'c',

where n is the electron density, u is the mean
velocity of an electron fluid element, E and B
are the e1.ectromagnetic fields, c is the speed of
light in vacuo, m, and e are the electron rest
mass and charge, respectively, and cgs electro-
static units are used throughout the present anal-
ysis. The energy constant of the motion implied
by Eqs. (1)-(4) is given by

Maxwell equations. We assume that the flow is
cold (pressureless) and the electron beam is fully
nonneutral. The equations are reduced to one
second-order partial differential equation for the
electron momentum in the limit that the energy
is constant, not only along current flow lines,
but also constant across current flow lines in the
diode region. The treatment is fully self-consis-
tent and includes the influence of self-field effects
on the relativistic electron flow. The equations
describing steady-state flow are given by

EQU I POT E N T I A L S

(e)

(c)

(b) ~,

J V[eq+(y —1)m,c']=0, (8) (a)

«(~x p) = p(~'y)l—y (8)

Equation (8) and the boundary conditions on p and
the electromagnetic fields constitute the basic
equations to be solved.

Equation (8) is solved by means of an asymptot-
ic expansion in the limit of small inverse aspect
ratio e =D,/R, «l, where D, is the gap spacing
between anode and cathode plasmas, and Ao is
the cathode radius of the planar, azimuthally
symmetric diode (Fig. 1). Anode and cathode
plasma layers are assumed present as illustrat-
ed in Fig. 1. The gap is divided into five regions

and reduces to the form ey+(y —1)m,c'=const in
the present analysis. From Eqs. (2), (3), (5),
and (6) and the vector identity, V(G'/2) =Gx(V
x G) +(G V) G, it follows that p x(V xp +eB/c) = 0
For azimuthal symmetry (&/&6 = 0) and no 0 rota-
tion, we find

V xp = —eB/c. (7)

Combining Eqs. (3)-(7), it is straightforward to
show that

.:::.:z.:::::::::.::.:. t

Do

FIG. 1. Diode geometry with computed equipotentials
and fluid flow lanes.

and solutions are obtained from Eq. (8), for re-
gions (a), (c), and (d). Shank emission is neglect-
ed in the present analysis because it is sup-
pressed by the high magnetic fields. Equation (8)
can be expressed in explicit form as

(10)

where z and r denote the dimensionless variables
z/Do and r/Do, and

q, =p,/m, c, q„=—p„/m, c.
We solve Eqs. (9) and (10) subject to the assump-
tions y =y(z), and E = 0 on the cathode-plasma.
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surface, and make use of the boundary conditions
y(z = 0) = 1 and y(z = 1) = 1 —eVO/moc —= yo, where Vo

is the diode voltage. For y, &3, the approximate
solutions for q„and q, in region (a) are given by

Ne/2. 7 t0

Cp2/Dp2

~/Dp~

q„=krz,

q.' = [1+(y, —1)z"']'- 1 —(y«)',
(i2) 7TE/fCp

( + I)/

sf C y (i4)

where k =-,'[(y, -1)/2)]"'. Further iterations can
generate better approximations to the exact solu-
tion. The radius R, (Fig. 1) is defined by the re-
lation q, '(z = 1) = q„'(z = 1), which gives

R, = (y, + 1)"'[9DO/4(y, —1)]= 2D~

for y, =3. The magnetic field at R, obtained from
Eqs. (7) and (12) is

qz

2E/pep

I

0 ~~/I. Cp2

FIG. 2. Sketch of density n and axial momentum q,
versus z, in region (c).

In region (b) none of the terms in Eqs. (9) and

(10) may be neglected, and strong radial electric
fields and q„-q, characterize the flow. No ana-
lytical solution has been obtained in this region.

In region (c), Eq. (6) can be expressed as

~q, ~q. q. ~'r
+6r &r ~z Br y Bz2'

q„=~z[exp(c,z) —exp(- coz) ],

c, =ln[y, +(y,'-1)"']. (i6)

The solution for q, is an oscillatory function (Fig.
2) and its first half-oscillation, near the cathode,
can be expressed as

arc sin(q, /A)"' —[(q,/A)(1 —q,/A)]"'

= c,z/A, (19)

where A =2@/rco. For z «1 and q,/A«1, we
find q, =(9ec,/2r)'~'z'~', which is reminiscent of

q, ~'r
Bz &z &r y ~z

where r and z are now normalized to Rp and D„
respectively, and terms of order c' have been
neglected in the term V'y. Inspection of Eqs. (15)
and (16) reveals that q, - e for all z, and that q„
is of order unity near the anode but approaches
zero faster than q, near the cathode. An iterative
flip-flop procedure is used to solve Eqs. (15) and

(16). [In particular, we solve Eq. (16) for q„as-
suming q, =0. The resulting expression for q„ is
then used in Eq. (15) to solve for q,. We then
return to Eq. (16) and iterate. ] The result for q„,
correct to order c', is given by

Child-Langmuir space-charge-limited flow. The
current density, however, varies as 1/r as op-
posed to a constant for cases where the Child-
Langmuir law applies in the entire diode region.
The solution for q, in regions further away from
the cathode is more complicated, and the essen-
tial elements of the flow are illustrated qualita-
tively in Fig. 2. The mathematical form of q,
will be treated elsewhere. '

In region (c) the magnetic field is found to be

B,= —(c/e)(V &p)8

= (m, c'/2eD, )c,[exp(cp) +exp(- c~)]. (20)

The expressions for 88 given in Eq. (20) [region
(c)] and Eq. (14) [region (a)] are comparable in
magnitude, which facilitates matching of solu-
tions in region (b). An approximate solution for
region (d) has also been obtained, but will be
presented elsewhere. ' The solution for the flow
in region (e) has to be matched to vacuum field
solutions that contain strong radial electric fields.
No attempt has been made to solve Eq. (8) near
the cathode corner. Only approximate equipoten-
tials are used.

The overall picture of the electron flow in the
gap, as found from the analytical solutions in the
various regions, is illustrated in Fig. 1. There
it is seen that equipotential surfaces remain near-
ly vertical and are not conic as assumed in the
parapotential-flow theory. At larger radii, the
electron™fluid flow lines have a large component
of velocity along equipotential surfaces and a
smaller component across equipotenbals. To
lowest order in ~, this motion is an E &B drift as
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I=8500(R,/Do)yoln[yo+(yo' —1)' ], (22)

where R, is estimated to be R, -R,/y, "'. The
current given in Eq. (22) is smaller by a factor
yo' than the current obtained from the parapo-
tential-flow model'; this result is in reasonable
agreement with the data represented by Parker'
and with recent measurements by Cooperstein,

in the parapotential flow model. The pinching ob-
served in the vacuum region of the diode is weak.
In particular, for region (c) the radial location of
the flow at the anode-plasma surface is r„=(1/
y,)r„where r, is the radial location of the same
current flow line at the cathode-plasma surface.
The current flow lines, however, graze the sur-
face of the anode plasma at very small angles.
Assuming charge and current neutralization for
the relativistic electrons inside the anode plas-
ma, the electrons flow free after entering the
anode plasma and focus on the z axis of the diode. .

The effective focal length, measured from the
vacuum-anode-plasma interface, is found to be

D' =D y (y
' —1) "'(in[y +(y ' —1)"']}' (21)

with an axial dispersion of order D'/yo. The clo-
sure of anode and cathode plasmas in region (c)
is retarded by magnetic field pressure for times
less than the classical diffusion time into a con-
ducting plasma, ws-2X10 "l'T"'/zlnA. For ex-
ample, if l=0.1 cm, T=10''K, z=1, lnA=10,
then v~-60 nsec which is comparable to experi-
mental times of interest. '

The total current, calculated from Eqs. (4) and
('20) at radius R, of the outermost electron flow
at the anode-plasma surface, is (in amperes)

Condon, and Boiler' that correct D, for gap clo-
sure.

The focused-flow model of beam formation and
pinching in relativistic diodes, presented for the
first time in this Letter, offers a new model of
relativistic diode dynamics, that treats the elec-
tron flow from cathode to anode in a fully self-
consistent manner including all self-field effects.
The basic equation [Eq. (8) ] may be used to de-
scribe the laminar flow of an unneutralized elec-
tron beam in a variety of circumstances [e.g. ,
diodes, drift tubes, etc. ].
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Room-temperature pressure studies (&3 kbar) on a-As2Se3 reveal that both hole trans-
port, as determined from time-of-Qight experiments, and dark dc conductivity increase
with hydrostatic pressure as exp(ep), where e 0.45 kbar ', independent of sample pa-
rameters. The pressure dependence and the shape of the phototransient strongly support
the recently proposed stochastic hopping transport. The pressure dependence of the dark
conductivity suggests a bulk controlled process.

The mechanisms of electronic transport in
amorphous solids are of considerable current in-
terest. The frequency dependence of the ac con-
ductivity o'(u&), ' and the dispersive photocurrent

transient l(t) observed in time-of-flight experi-
ments, ' ' indicate that, besides conventional
band-type conduction, carrier transport may be
occurring via phonon-assisted hopping among lo-
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