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We report on the stability of plane Langmuir solitons to perturbations in the trans-
verse direction and of cylindrically symmetric solitons to azimuthal perturbations. Two-
dimensional numerical solutions of the basic equations, including the effect of finite ion
inertia, show that both cases are unstable and that the collapse of annular solitons in the
azimuthal direction is faster than their radial collapse.

Plasma heating by short pulses from high-pow-
er sources, e.g. , intense relativistic electron
beams' or lasers, ' takes place in general via col-
lective effects for a rather broad regime of pa-
rameters. The high power of these sources pre-
cludes in many cases the application of the theo-
ries of weak turbulence. ' Numerical simulations"
of electron-beam and laser interactions with
plasma have clearly indicated that the energy of
the high-frequency &u

—&u„ long-wavelength A c/
~, (&u, is the plasma frequency) primary spec-
trum generated by the two-stream instability is
rapidly (-a few hundred &u, ') transferred to
short wavelengths A. «A. D„, where A. D is the Debye
length. This observation is in direct conflict with
the conclusions from weak-turbulence theory'
which demand that nonlinear processes should
transfer the energy of the primary spectrum to
still longer wavelengths. Explanations for these
numerical results have been offered in terms of
a parametric instability driven by the primary
spectrum.

The spectrum observed in numerical simula-
tion studies, lE~l'~k ', has recently been in-
terpreted' to be equivalent to treating the turbu-
lent fields as a random interaction of "solitons"
composed of Langmuir fluctuations. In this ap-
proach, the "soliton", which is a condensation of
high-frequency energy localized by creating a
well in the plasma density of magnitude 6n/n,
= —IE„I'/4mT„ is regarded as a basic element.
It thus becomes necessary to investigate the sta-
bility of solitons and the nature of their interac-
tion with one another.

In one dimension, solitons are stable entities.
Our investigation of the interaction of two soli-
tons using particle simulation codes as. well as
fluid codes' confirms the conclusions of Degtya-

V" (i BE/8t+ VV E —vE) = 0,

82v/Bt2 —V v= V'
i E i,

(1)

(2)

where E is the complex amplitude of the high-fre-
quency electric field, Z= E(x, t) exp(- i&a, t), and
v is the low-frequency perturbation in the ion
density. Equations (1) and (2) are in dimension-
less units; the units of time, space, electric
field, and density are, respectively, z(m, /m, )
&«u ' ' (m /m )'"A. (64m/3)'"(m /m. )'"(n, T,)'"
and &(m„/m, )n, . These equations admit several
invariants. The first two invariants are I, = flEI
xd'r, and I2 = f [v IEI'+ IV El'+ (v'+ Ivl')/2] d~r,
where 8 v/Bt+ V v = 0 and the second invariant
may be written as I, = f(l V El' —IEI'/2) d~r when
the ion-inertia term of Eq. (2) is neglected. '

We treat two cases: (i) the stability of a plane
one-dimensional soliton, "E(x, t) =xE, exp[i(kx
—(ut)]/cosh[k, (x -v, t)], v(x, t) = IE(x, t)I'/(v, '-1),
with E, = v 2ko(1 —v ')' ', (o =k' —ko', v = 2k (1,
to perturbations in two dimensions, and (ii) the
stability of a cylindrically symmetric annular
soliton to azimuthal perturbations.

rev, Makhamkov, and Rudakov': viz, (i) if ion
inertia is neglected then two solitons pass through
each other and emerge without a change of shape
or amplitude; (ii) inclusion of ion inertia allows
the possibility of energy being either radiated or
absorbed as ion sound waves. Thus two solitons
can coalesce under certain conditions to form a
single soliton with the excess energy being ra-
diated away.

In this Letter we report on the stability of soli-
tons to perturbations in two dimensions. The
fundamental equations for the nonlinear interac-
tion of high-frequency electron oscillations with
the ion fluid are due to Zakharov':
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The fundamental equations are solved numeri-
cally in two dimensions by Fourier transforms
with respect to x and y, assuming periodic boun-
dary conditions with periodicity lengths L„and I,
With (= —V E and the use of Fourier transforms,
Eqs. (1) and (2) yield [$]-„=—ik'[tc]-„—k [vE]-„and
[v']-„=—k'[v]g-k'[iEl']-„. The dots denote time
differentiation and the square brackets denote
Fourier transformation with k = (2wm!I.„)x+(2ttn/
1., )y. Modes corresponding to —m~ & m& m~~
and —n ~« - n - n ~» are retained in the computa-
tions. The convolution sums required in the non-
linear terms are computed by transforming back
to x-y space after the addition of zero modes to
eliminate the periodicity in k space. The spatial-
ly homogeneous field [E], , which cannot be com-
puted from [g] & is found from the equation [E],
= —i[vE], which follows from Eq. (1). An implic. -
it time step is used in which the linear terms
are integrated exactly in time and the nonlinear
terms are evaluated to order At'. All spatial
differentiations are carried out in k space and
representation in x-y space is used only in eval-
uating convolutions or for diagnostic purposes.
This method is similar but not identical to the
split-time-step Fourier method. " The accuracy
of the solutions has been verified by checking the
variations of I, and repeating a number of compu-
tations with different values of m~», n~», and
at.

The first study considers one-dimensional soli-
tons, with E(x, f) in the x direction as defined
above, which are given an initial perturbation in
the y direction. The evolution in time of such a
soliton with k, =2, k=0 (i.e., a standing soliton),
and an initial perturbation potential 6y = ~E„(x,
0)exp(ik, y), with e =0.05, k, = w/6, and 5v=0, is
shown in Fig. 1. From t=0 to t=3, the soliton in
this case remains stable while emitting ion sound
waves as shown by the plots of v at t = 3. How-
ever, for t&3 the soliton becomes unstable, col-
lapses, and at t=6.5 most of its energy is con-
centrated in two blobs. This computation, with
identical initial conditions, was repeated with the
neglect of the ion-inertia term in Eq. (2) from
which it follows that v= —lEI'. When ion inertia
is neglected, the soliton is unstable from the ini-
tial time and collapses in a shorter time, t= 3.5.
These computations were carried out with 1.„=L,,
=12, m =n =10, and At=0. 0125, and were
repeated with ~~»= n~» ——20 without significant
changes in the results.

Two additional sets of computations were car-
ried out with planar solitons to investigate the ef-
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FIG. 1. Collapse of one-dimensional plane soliton
perturbed in the transverse direction. The contour
lines are labeled in fractions of g1~~„and v~t„.

feet of k and k, on the instability. In these com-
putations a. perturbation R, = ek, cos(k, y) on the
parameter kp is introduced with kp 2 and 6 0 05.
In the first set we consider k, = tt/8 and three val-
ues k =0, 0.2, and 0.3. These cases were unsta-
ble from t=0 and the solitons collapsed, their
maximum energy IEI ~«' increasing by a factor
of 4 from t=0 to t=1.5, 1.7, and 2.0, respective-
ly. These results show that solitons become less
unstable as their group velocity increases. In
the second set of computations we assumed k =0
and three values k, =tt/8, tt/4, and n/2 corre-
sponding to modes n = +1 with 1.,= 2tt/k, . For k,
= tt/8 and tt/4 the solitons were unstable, IE1 ~,„'
increasing by a factor of 4 from t=0 to t=1.5
and 1.8, respectively. For k, = tt/2 the soliton
was stable out to t= 8. These results show that
long-wavelength per turbations are most unstable.

In the second study we consider the evolution
of cylindrically symmetric solitons. In this case,
with the neglect of ion inertia, the second mo-
ment A = jr '1 E 1' dx dy satisfies d'g /d t ' & 8I„
whence dA/dt& [dA/dt], ,+8I,t, which shows that
the soliton collapses radially when I, &0.' Com-
putations have been carried out with a radial
electric field initially of the form E„=E,exp[i'(r
—r, )]/cosh[k, (r- r, )], with E, = W2k, (1 —4k')'",
kp=2, rp=2, and for two cases k=0.125 and k
= 0.3. These 1Mtlal conditions yield 12 ——101 for
k=0.125 and X, =-13 for k =0.3, and computa-
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FIG. 2. Evolution of cylindrically syn)Imetric annular
solitons with gi as a funct'ion of radial distance (solid
lines) and as a function of p |broken lines).

FIG. 3. Evolution of annular soliton with azimuthal
perturbation with@0=2 k =0.125 and l =1. The con-
tour lines are labeled in fractions of g[~~„2. The star
indicates the position of the initial maximum of gl .

tions with the ion-inertia term neglected in Eq.
(2) confirm that the solitons collapse in both
cases with collapse times t~ 1.5 for k =0.125
and t =4 for k =0.3. The results of computations
which include the ion inertia are shown in Fig. 2.
For k = 0.125 the soliton now remains approxi-
mately stationary until t= 2.5 after which its ra-
dius decreases, while for k =0.3 the radius ex-
pands to twice its initial radius from t=0 to t= 4.

We now examine the evolution of cylindrical so-
litons when an azimuthal perturbation of the form
5E„=eE„cos(ly+ y, ) is superimposed over the
cylindrically symmetric field E„. The result of
a computation with k =0.125 corresponding to the
slowly collapsing soliton of Fig. 2, with &=0.05,
l=l, and q&, =w/3, is shown in Fig. 3. We ob-
serve that this case is unstable and the soi.iton
collapses in the azimuthal direction within a time
t =1.5, i.e., much faster than the radial collapse.
Further computations with l = 2 and 3 resulted in
slower azimuthal rates of collapse, with collapse
times t =2.25 and 3.0, respectively. Finally we
considered the case k =0.3 with l = 2. The soliton
in this case expands radially but also collapses
in the azimuthal direction and after time t= 2.5

its energy becomes concentrated in two blobs.
The cylindrical computations were carried out
with (m'+n')'I'&20 and values of I.„=l.„r nagi gn

from 8 to 16.
We have shown that plane stable solutions of

Eqs. (1) and (2) are unstable to perturbations in
the transverse direction. Similarly, cylindrical-
ly symmetric annular solutions collapse in the
azimuthal direction when the constraint of cylin-
drical symmetry is relaxed. In all cases con-
sidered the collapse in the azimuthal direction
occurs faster than the radial collapse. The high-
frequency electric field energy appears to be
channeled into regions where the field energy is
already high and to condense into ever smaller
and denser blobs. This behavior suggests that in
the long-time limit the energy distributions must
depend on particle interactions or other physical
effects" not included in Eqs. (1) and (2).

During the course of these investigations we
were made aware of the work of Degtyarev,
Zakharov, and Rudakov. " With respect to plane
solitons their conclusions are similar to those
presented in this Letter. We have extended these
results to the stability of cylindrically symmetric
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solitons to azimuthal perturbations.
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A source of polarized He++ particles based on the Lamb shift in He+ ions is now op-
erating. After axial injection into a cyclotron and acceleration to 33 MeV the on-target
beam intensity in a scattering chamber exceeds 0.1 nA. Nuclear scattering experiments
together with a study of the source characteristics indicate a beam polarization value of
P = 0.40+ 0.05.

The feasibility of producing a beam of 'He"
ions with nuclear polarization was briefly report-
ed in an earlier communication' and a proposed
design for a polarized source has also been out-
lined. ' This source, which is the first of its kind,
has now been built and is currently used in nucle-
ar reaction experiments. The present Letter de-
scribes its performance in operation with a cyclo-
tron.

In the source, metastable sHe'(2S) ions are
created by the collision of a primary SHe" beam
with air molecules in a gas canal. The ions then
pass through a strong axial ma.gnetic field of 0.20
T in which Zeeman splitting of the 2'/2 and 2Py/2
states takes place. The lower 2S„, states (m,
= —s, mr=+2) are quenched to the short-lived 2P
states by passage through a rf cavity in which a
transverse electric field is excited at a frequen-
cy of 10 GHz. After entering a weak-field region

in which hyperfine coupling is re-established the
remaining metagtable beam carries a nuclear po-
larization I' = 0.50. The metastable component
(2S) of the total beam is next ionized, with high
selectivity with respect to the large 'He'(lS)
ground-state component, in a second gas canal
containing air. There is a fuller description of
these processes in Ref. 2.

Among the factors determining the nuclear po-
larization of the final beam is the efficiency of
the electron-transfer processes in the two gas
canals. Measurements' have shown that the over-
all efficiency is approximately 0.1%, with a se-
lectivity in excess of 5:1 for 'He++ created from
'He'(2S) compared with 'He" created from the
ground state (1S). This has been confirmed by
detailed measurements' of the individual cross
sections for the main processes in the two gas
canals.
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