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A sketch of the proposed experiment is shown there in
Fig. 9.

R. C. Jaklevic, J. Lambe, J. E. Mercereau, and
A. H. Silver, Phys. Hev. 140, A1628 (1965}. The anal-
ogous experiment is the one in which they produced
phase modulation by motion of superconducting elec-
trons. On a base film they located two weak-link junc-
tions which were connected electrically in parallel but
separated 8 mm apart. By passing a drift current
through the base, they observed a periodic maximum
Josephson current through the junctions. Our channel
velocity v~~ and filling rate in B are analogous to their
drift current and maximum Josephson current, re-
spectively.

An alternative to the quantum mechanical explanation
is to assume a pro~ that circulation is quantized and
then pursue classical fluid dynamics.

6Using similar phase-coupling arguments, H. E.
Corke and A. F. Hildebrandt, Phys. Rev. A 2, 1492

(1970), explained observed restrictions in the flow of
helium.

The phase difference is largest in the neighborhood
of the narrowest point in the orifice. From Fig. 4(a)
we see that the opening is actually located at the bot-
tom of a deep blind hole. Thus the wall thickness
around the narrow opening is only a few microns thick.

8To date we have been unsuccessful in detecting the
vortices individually but further tests are planned.

See, for example, Ref. 8 or %'. Zimmerman, Jr.,
Phys. Rev. Lett. 14, 976 (1965). Experimentally this
was observed by R. Carey, B.S. Chandresekhar, and
A. J. Dahm, Phys. Rev. Lett. 81, 878 (1978).

The phase drop, D4, in the orifice needs to be ~ m,
hut since AC = |0 v(x}dx, where L is the thickness, we
need to minimize the thickness of the narrowest area
which is done in the orifice shown in Fig. 4(a) but not
in Fig. 4(b);

The effect was not observed above T~.
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The hydrodynamic theory of mass transport in A-3He is derived from that phase's bro-
ken symmetries and thermodynamics. First, second, and fourth sound as well as orbit
waves are obtained as the normal modes.

From the very active experimental' and theo-
retical" work on the low-temperature phases of
'He it has become clear that several symmetries
are simultaneously broken in the so-called A
phase. One of these, broken gauge invariance,
is common to all known superfluids. In addition,
orbital rotational invariance is also broken in
A. -'He, because of an alignment of the orbital an-
gular momentum of the triplet pairs. ' Since this
implies a directional long-range order in real
space (rather than spin space like, e.g. , in fer-
romagnets), one is strongly reminded of the or-
der in a nematic liquid crystal. ' However, un-
like in nematics, the directional order parameter
in'-'He. (being a certain angular momentum) is
odd under time reversal and transforms like an
axial vector under spatial inversion. In this lat-
ter respectA- He is more similar to ferromag-
nets. '

These facts have far-reaching consequences
for the low-frequency collective excitations in
the A. phase. Clearly, low-frequency "orbit
waves" must exist, which are the Goldstone ex-
citations of the broken rotational symmetry. '

Even more exciting, the new order parameter,
being a vector in real space and odd under time
reversal, can couple to the mass current, as
pointed out by de Gennes. '

A rich literature on this subject has already
grown up. ' The results obtained have been re-
stricted in their domain of validity, however,
since they were based on gradient expansions of
the Ginzburg-Landau type and/or on BCS weak-
coupling theory, eventually corrected for Fermi-
liquid and spin-fluctuation effects. By contrast,
the present paper is concerned with the general
hydrodynamics of A-'He, which has not been giv-
en previously. This theory has the advantage of
being model independent and rigorous in the hy-
drodynamic limit. The obvious disadvantage is
the impossibility to compute the phenomenologi-
cal parameters entering the hydrodynamical equa-
tions within the same approach. In the case of
superfluid 4He the corresponding theory is the
well-known two-fluid hydrodynamics' which has
proven to be of great value. For simplicity we
will disregard spin motion and consider linear-
ized hydrodynamics only.
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Like in antiferromagnets or nematics, the ab-
solute value of 1 is not considered a hydrodynam-
ic variable, i.e., we assume l; l;=0 and l;V„l;=0
on the hydrodynamic time and length scale. The
currents in Eqs. (1) and (2) now have to be deter-
mined.

From y and l one can construct two different
velocity fields, "

(2m/k)V ' =V@; (2m/h)V" =V&&1, (3)

We begin with a statement of the five conserva-
tion laws for the mass density p, momentum den-
sity g, energy density &, and their appropriate
currents,

g;+V, o;;=0; ~+V ~ j, =0, (1)p+V' g=Q~

which already completely describe a simple
fluid in the hydrodynamic limit. In A-'He there
exist, in addition, two qua. siconserved quantities,
due to the broken symmetries: a "phase" y
which does not commute with the particle number
N, and which we normalize in such a way that

[p, i~N] = —i; and an axial vector 1 (in the direc-
tion of the net orbital momentum of the triplet
pairs) which does not commute with the angular
momentum L. y and l are assumed to be odd un-
der time reversal. l is the unit vector in the di-
rection of l, which will be generally taken as the
3 direction. The commutator is understood as a
Poisson bracket. Since we are concerned with
macroscopic theory of A. -'He, the microscopic
definitions of y and l need not concern us."

Because of the existence of y and 1, Eqs. (1)
are no longer complete and have to be amende
by three further equations:

which are curl free and source free, respectively.
Consequently, we may write out the momentum
density in terms of the three different components

p(.i.&(n~ -(~).&(.) C.&(.i (4)

where V" is the normal-fluid velocity. The
three mass-density tensors are all of the form

p;~"'=pi" (&;a —l;l~)+pii "'l la etc. (&)

(5/2m)l;+X; =0; (h/2m)jb+g =0.

a Since a uniform Galilean transformation leaves
the field l unchanged, we must have p 1 = p

~"

+p".
The remaining currents in Eqs. (1) and (2) are

d now determined from the broken symmetries and
thermodynamics. '~" First we write down the
Gibbs relation appropriate to our set of hydro-
dynamical variables:

Td(pq)=tR- p, dp —V 'dg — d 'd(Vy) — Q . d(V, l ). (6)

As usual, only the gradients of the ordered variables enter. '
p. is the chemical potential; A~' and Q;;

are the thermodynamically conjugate quantities of Vy and V& 1;, respectively, which will be determined
below. Next, we insert Eqs. (1)-(4) into Eq. (6) and integrate over space. On the reversible level the
resulting entropy production has to vanish, which severely limits the possible form of the currents.
A further restriction comes from the fact that y is canonically conjugate to the particle number and
thus satisfies

which already fixes the reversible part of g~. Galilean and time-reversal invariance and the axial
symmetry of the A. phase then serve to pin down the remaining currents in the form

g=pV'"'+ " j '=Tp V'"'+pg

X;"= p e;~t, l~ V, &j&~,
—[n, (5;, —l; l;) l„+ n 3 (5;~ —l; l„)l;] V;V„~"~;

~' =&6'+'-V f4[ni(4 ~+4~ )+n.(4*~-4~*)]+4(n.-ni)4 ~+(l, ~-l, l)),

P, n„n, are phenomenological parameters. g~, g, and j,"are like in any superfluid. The expres-
sion for X; is new and characteristic of A. -'He. The n„n, terms of X; would occur also in a ne-
matic, although X~ would be odd there and l; would be even under time reversal; that property sim-
ply cancels from both sides of the equation. The P term in X; does not occur in nematics, but has its
counterpart in ferromagnets, where it is the stiffness term, which gives rise to spin waves. Here,
this term will give rise to orbit waves, even when V" vanishes, as will be seen below. The stress
tensor 0;, has been chosen in a symmetrical way in order to guarantee angular momentum conserva, -
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tlon.
Let us now turn to the parameters &('~ and. P;; introduced in Eq. (6). Our result for g requires A('~

to have the form &~') = p" (V" -V'"')+C V'"'.
In order to determine the form of Q;, let us first consider a frame in which V~') and V~"' both vanish.

There we have

Q;; ' =(h/2m)K;, „V, l, ,

where K;;,i can contain three independent constants,

(Qadi, li li, )(5ii li I i) +K2e i,i, lqcqiq lq+KB(6ii, li lq)li li

From the symmetry of thermodynamic cross derivatives we find

(10)

Thermodynamic stability requires that K„K,-2K„K» pii, Pi. , Pii (K2-2K') —Cii 1 and Pi(s) (s) (s) (s)

-C~' all be positive.
Let us now turn to the dissipative parts of the currents. They are obtained under the constraints of

positive entropy production and correct space- and time-inversion symmetry. The result is

j~ = -K'VT; g„=—fV ~ A.
~ —$;;V,P, (n) .

X; = rl(5;i —-k, l„)V;iti„- $v;Vi, V; "'; (11)

with

~ikj ~(lk~ijp Ii~lrip)lp'

We obtain thus two heat conductivities K„,K„ five ordinary viscosities (like in a uniaxial crystal or
nematic ), one viscosity g related to curl-free superfluid flow, and one viscosity q related to source-
free superfluid flow. In addition there are two viscosities ] ii )i relating normal and curl-free flow,
and one viscosity $ relating source-free and normal flow. There are no cross terms between the two
superfluid components and between the heat flux and all three Quid velocities. A number of obvious
positivity conditions for these transport coefficients follow from the positivity of entropy production,
which I will not write out to conserve space.

I et us finally turn to a brief discussion of the normal-mode spectrum which follows from our equa-
tions. It is convenient to take the wave vector always in the 1-3 plane. If we neglect dissipation, the
equations for p, g„g„y, and p, are decoupled from i„ i„and g, to lowest order in k and can be
solved separately for first and second sound. Neglecting the small specific heat difference C~ -C~,
we obtain

g* TS2 p (s) (s)
2 ~, y2 + 2 J y 2+PI1 y 21

gp P +2
C (n) 1 (n) (12)

for the first and second sound frequencies, respectively. Thus first sound remains isotropic (because
of the fact that the stress tensor o;, is isotropic for k-0), whereas second sound is affected by and al-
lows study of the anisotropy of the superfluid.

Orbit waves are most easily discussed for the physically interesting case of flow in packed powders,
where V(") =0 replaces the momentum balance equations. %e obtain for fourth sound

= (0 [co +0t((k p +k& p )]
with

I

( {s)k 2+p (s)k 2)
8

(ps)

and for orbit waves

2(u,~ = + (4P'5 (k) (K k, '+ K k, ')k' —q '[5 (k)k' —K k, ' —K k, ']'j'~'+ i q [~ (k)k'+ K k, '+ Kk, '], (14)
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where
k, 'k, '(C

()
—C, )'

g(k) = K,k, +K,ks' —
(s)k 2 (s)k 2

P)f 3 I J 1

is a positive, direction-dependent, effective
mass density.

A few points are worth making here: Fourth
sound is clearly separated from the orbital ex-
citations in the hydrodynamic limit and thus does
not lose its specific value for the measurement
of p '). Only for P' sufficiently large compared
to g can an oscillatory behavior of orbit waves
result. Experimental observation of the latter
would thus provide direct information about the
presence and the importance of such a term.
For sufficiently large p' the dispersion relation
is of the ferromagnetic-sp'in-wave type'; how-
ever, unlike in ferromagnets, the damping of
orbit waves is also of order k', because of the
fact that the directional order parameter of A-
'He is not a constant of the motion.

In the more general case V "~ t0, things be-
come more complicated. In particular, the cpy

and o., terms of X;", Eq. (7), contribute to the
oscillatory behavior of the orbit waves, as can
already be seen from their analogous effect in
nematics. These algebraically more involved re-
sults will be presented elsewhere, together with
a more detailed account of this theory.

In conclusion I briefly compare my results with
those of earlier work. The complete equations
of linearized hydrodynamics, including dissipa-
tion, have been presented here, I believe, for
the first time. For second and fourth sound it is
legitimate to neglect dissipation for k-0. These
results then reproduce or are consistent with
earlier results obtained in the framework of a
Landau quasiparticle picture"" or in a gener-
alized Ginzburg-Landau expansion& for orbit-
al waves the neglect of dissipation is not pos-
sible even for k-0, unless the relevant viscosi-
ties turn out to be small. Putting the latter equal
to zero one arrives at results which are consis-
tent with results from a generalized Ginzburg-
Landau theory. ' Unfortunately, I cannot resolve
the discrepancy" in the result for C, since both
results fit the general frame set by hydrodynam-
ics. It appears that a resolution of this discrep-
ancy can only come from microscopic consider-
ations. Finally, recall that I have only consider-
ed the hydrodynamics of mass motion in the pres-
ent note. Similar work on the spin part of the

hydrodynamics is currently in progress and will
be reported elsewhere.
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