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I discuss the photon antibunching effect and point out that there exist many states which
exhibit the effect and demonstrate a simple procedure for generating them mathematical-
ly. I also suggest here a possible approach to the experimental observation of the effect.

The Hanbury Brown-Twiss effect, or photon
bunching, was detected in 1956.' The tendency
for photons produced by natural sources to clus-
ter has prompted much discussion in the litera-
ture and I shall not consider the matter any fur-
ther here. The effect may be understood quan-
tum mechanically in terms of photon clustering
or classically in terms of the stochastic charac-
ter of the radiation processes in natural sources. '

The role of the quantized character of the elec-
tromagnetic field in elucidating the structure of
optical phenomena has a large literature in which
one may find opinions covering a wide spectrum
as to the necessity of a quantized description.
There is no doubt a good measure of validity to
some of the arguments advocating a semiclassi-
cal treatment.

Here I discuss a topic in which the quantized
character of the electromagnetic field is indispen-
sible to a correct interpretation, namely, the
negative Hanbury Brown-Twiss effect, also
called the photon-antibunching effect or the anti-
correlation effect. That this effect can occur and
that it may not be comprehended in terms of an
unquantized electromagnetic field has been point-
ed out on numerous occasions by Glauber. ' Vfhy
has this anticorrelation effect (ACE) not been ob-
served'P There is certainly an abundance of quan-
tum states of the field which display the effect.
It is well known' that a state containing a definite
number of photons, an n-quantum state, will dis-
play the ACE, but such states offer little hope of
experimental realization.

It is clear how one may mathematically generate
states which have the ACE from ones which do
not. A state (of a single mode for convenience)
which displays the ACE is characterized by the
fact that the variance of the photon number (hN)'
is less than the average photon number (N), i.e.,

Given a state in which & is positive or zero we
look for some operator which when acting on that

state increases the value of (N) while leaving the
variance unchanged. An operator which will per-
form this service for an arbitrary state ~ y) is
the phase operator' E+ =a~(a~a+'i) '". If we de-
fine (g) =&,

~ y) for an arbitrary state
~ y) we

have

It is clear that using this sort of procedure one
may generate a large class of states possessing
the ACE. I shall discuss the detailed structure
of the ACE in a future paper.

I now suggest one possible way to observe ACE
Rnd 1n so doing, I prov1de R pRrtlRl explRQRtlon
for the absence of previous observations. The
measurement I consider here suggests that the
ACE is likely to be found in transient processes,
i.e., in the early stages of certain processes and
lasting for very short periods of time. These
are not the conditions under which photon corre-
lation measurements are usually made.

Let us now consider the problem of generating
states which have a negative value of ~. It is
clear that the process which may generate such
states will begin with the field in a state having
a nonnegative value of & since these are readily
available from existing sources. So we need
some device that is capable of driving & nega-
tive at least for some interval of time.

One such device is the degenerate parametric
amplifier, i.e., a parametric amplifier for which
the signal and idler are identical. The degener-
ate parametric amplifier has quite a different
statistical behavior from the usual nondegenerate
one and it can generate states having the sort of
correlations required to produce the ACE during
a portion of its operation. The basic formal
strucutre of optical parametric amplifiers may
be found in many papers and books. ' Here we
follow the treatment by Louisell' in which the
pump is treated classically and losses are ne-
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(&(t)) = (o' I ~'(t)~(t) I o'&

= ( , zIoa a I z, a), (4)

where z = kt exp[i(@+2m)]. From this result we
see that the states Iz, n) can be produced by the
degenerate parametric amplifier. This may be
stated most succinctly for the Schrodinger-pic-
ture state vector. If at 1=0 the mode is in a co-
herent state Io.'), then at time &the mode is in the
state Iz(t), a(f)), where z(t) =kt exp[i(p+ 2w+ 2&sot)]
and cx(t) =n exp( —i&sot).

When we calculate 4(t) for the state of the field
generated by the degenerate parametric amplifier
we see that under certain conditions it mill be
negative for some finite interval. If the photons
emitted during this interval are counted they will
display the suppression of coincident pairs char-
acteristic of the ACE. Using Eq. (3) we can cal-
culate &(t) in a straightforward manner and get

glected. Adapting those results to the degener-
ate case of a single mode of frequency ~o we find
the Hamiltonian of the system to be II =cuoaa
-k[a 'e '~ "~~+H.c.]. In this expression 5 is
taken to be unity and k is the (positive, real) cou-
pling constant, while —q is the initial phase of
the pump. The pump fr equency M ls equal to 2(d&.

The equation of motion for the (Heisenberg pic-
ture) annihilation operator a(t) corresponding to
the above Hamiltonian is i'(t) = ~,a(t) —k exp(-i
&& (u&+ p )] a (t). The solution to this equation is

g(t) = exp(- i&sot)[a coshkt+ a ie ~ sinhkt], (3)

where a =a(0) is the annihilation operator at t =0.
Using Eq. (3) we may calculate A(t) for any

chosen initial state. I et us take the initial state
to be a coherent state I n).

In some recent work on states of minimum un-
certainty product' the present author studied a
class of states Iz, o.) generated from the coher-
ent states I o. ) by means of the unitary operator
U, = exp[z(za'-z*a ')]. In general z is an arbi-
tra, ry complex number. In Ref. 8 I showed that
the above states for zeal z constitute all of the
minimum-uncertainty states, i.e., states which
minimize the uncertainty produce of position and
momentum. For complex z the Iz, o.') are notmin-
imal. The effect of the operator U, on an anni-
hilation operator a is given by U, aU, = a cosh~
+ a sinhre ', where ~ = re' . Using these re-
sults and some of the techniques employed in
Ref. 8 we can show that the expectation value of
the photon number, is given by

(letting o.'= pe' and —y = pp)

&(t) =A (t) + p'[B(t) + C (t) sin(2 8 —cp )],
where

A(t) =~ (cosh4kt —2 cosh2kt+1),

B(t) = cosh4kt —cosh2kt,

C (t) = sinh4kt —sinh2kt .
The functions A. (t), B(t), and C(t) are all nonnega-
tive so that the only way &(t) can be negative is
for sin(28- cp~) to be negative. The optimum
choice for the anticorrelation effect to be most
pronounced is for sin(28 —y~) to be equal to —1.
This will be the case for 28 —tp~ = —m/2. For this
choice &(t) becomes

This function is zero at t=0, and goes negative
as t increases from zero. It is maximally nega-
tive at t, = ln2/2k and it becomes zero again at
t2= 1n(2p2~3+ —,)/2k after which time it remains-
positive. These estimates of t, and t, are accu-
rate provided that p' is no smaller than, say, 10.

An experimental realization of the process
discussed here might proceed as follows. A
strong cw laser beam is allowed to enter a non-
linear crystal and produce some second-harmon-
ic light. Both the fundamental and the second
harmonic are then allowed to enter a second
crystal of the same material. The second har-
monic serves as the pump and the fundamental
serves as the signal and idler. The second crys-
tal can be tuned so as to make the signal and
idler modes identical. The phase combination
28 —y~ may be set at the proper value by adjust-
ing the distance between the two crystals. The
second crystal will then serve as the amplifier
and the emerging light at the fundamental fre-
quency shouM display the ACE. The magnitude
of the effect will be determined by the value of
& which characterizes the emerging radiation.
This is in turn dependent on the amount of time
the light spends in the second crystal. The op-
timum amount of time would be t, at which & is
most negative.

I have carried out my computation in the time
doma, in, mhich is most natural in quantum me-
chanical problems of this sort. However, in
order to discuss the performance of an actual
parametric amplifier using nonlinear crystals
we must translate the results so that they apply
to a steady-state spatia, lly dependent oscillation.
This may be done by replacing kt by Z~ in the
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hyperbolic functions in Eq. (3) where z refers to
the direction of wave propagation in the crystal.
The constant y may then be evaluated using con-
ventional coupled-mode theory for optical oscil-
lators. ' The maximization of the ACE then oc-
curs when the amplifier crystal has length E,

such that y~, =At, which makes & as negative as
possible.

To examine the feasibility of observing the
ACE this way, let us consider a specific case
and put in some typical numbers.

A suitable crystal to use here might be barium
sodium niobate. This material has large phase-
matchable nonlinear coefficients and good resis-
tance to optical damage, and ca,n be grown with

good optical quality and low loss. The value of
y/, which makes & most negative is ln2/2= 0.35.
This corresponds to a single-pass gain of about

Taking the pump wavelength to be 5300 A,
and the parametric amplifier material to be bari-
um sodium niobate, we find the value of y for de-
generate operation to be approximately

where I~ = 10' W/cma.
Taking I~ = 10' W/cm, we find that E, is about

3.7 cm. This might be a bit large but is not un-
reasonable. In fact, the exact length of the crys-
tal is not critical since, in the vicinity of its min-
imum value, & is a relatively weak function of jt.

The minimum value of ~ is approximately —0.25p'.
If the length of the crystal is reduced to one tenth
of the optimum value then & has its magnitude re-
duced by a factor of 0.25. Since p' can be quite
large, say 10' or more, a tenfold reduction in
crystal length leaves & still sizably negative.

The observability of the ACE in this experiment
is crucially dependent on the relative phase 20

The optimum value of this quantity is —w/2.
The effect of fluctuations away from this value
must be considered. For an amplifier crystal of
optimum length the ACE will persist for values
of the relative phase as much as 20' above or be-
low the optimum value of —w/2. Of course, the
value of ~ becomes less negative as the relative
phase departs from its optimum value. There
are several sources of fluctuation of the relative
phase. The signal and pump emerge from the
first (second-harmonic generation) crystal with

a definite value of the relative phase. If the laser
source is operating in a single mode and if the
second-harmonic generation takes place with per-
fect phase matching, then the value of the relative

phase is in fact —w/2. If it could be held at that
value then one could achieve optimum relative
phase at the entrant surface of the amplifier crys-
tal by adjusting the distance between the two crys-
tals. There will, however, be fluctuations away
from —w/2 due to departures from perfect phase
matching in the second-harmonic-generation crys-
tal and from variations in the frequency and phase
of the laser source. The fluctuations due to vari-
ations in the laser frequency and departures from
perfect phase matching can probably be reduced
sufficiently so that they will cause only small
changes in the relative phase. The phase of the
laser, however, undergoes a relatively slow dif-
fusion over the full 2~ range. Since this is an un-
controllable factor the detection of the ACE will
require that the relative phase be monitored. For-
tunately the output of the degenerate parame'tric
amplifier is highly phase dependent and such mon-
itoring appears to be possible.

It could be done, for example, by making use of
the fact that the intensity of the amplifier output
signal is louex than that of the input signal when
the ACE is present. This is an indication that
the device produces the ACE by soaking up coin-
cident pairs of signal photons and converting
them to pump photons. Under optimum condi-
tions of relative phase and crystal lengths the
output signal intensity is about half the input in-
tensity. So the detection circuitry could be ar-
ranged to count photons only when the output sig-
nal intensity was lower than the input. This
would enable one to exclude from the detection
process the effects of large excursions of the
relative phase away from its optimum value.

The role of parametric fluorescence in other
modes as a source of noise will be negligible
here. To calculate the contribution to & we con-
sider a nondegenerate oscillator. We find that
we get a positive contribution to & of (sinhyl, )'
=0.016. This is negligible compared to the con-
tributions from the degenerate-amplifier output.

The effect of losses should not materially
change the results as long as the operation is
well above the amplification threshold. We have
done the calculation here using a pure initial
state of the signal mode. A mixed state described
by some density matrix is more realistic. The
ACE will also be present in such cases too, pro-
viding there is the right sort of phase correlation
between the signal and the pump analogous to
sin(28 —q~) being negative in the pure state case.
This phase correlation aspect is really the cru-
cial thing for the effect to be generated at least
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in the type of process we consider here.
The state generated by the degenerate paramet-

ric amplifier, ~z(t), o.(t)), is not a state of mini-
mum uncertainty product in general. But the un-
certainty product does take on its minimum val-
ue periodically every time z(t) becomes real.
This happens at a rate equal to the pump frequen-
cy. It does not appear that minimality is in any
way crucial to the ACE especially since there
are density matrices displaying the ACE but, as
I have shown in a recent paper, "there are no
minimum-uncertainty density matrices.

I have suggested here a possible specific way
to detect the photon anticorrelation effect and
also provided some ideas which might lead to
other ways. The effect is of interest in several
contexts and it seems worthwhile to pursue its
detection.

The author would like to thank his colleagues,
Professor M. Menes and Professor E. Cassedy,
fol helpful dlscusslons regarding some experi-
mental aspects of the measurements proposed
here.

Note added. —The principal ideas contained in
this paper were discussed by the author at the
February I973, New York Meeting of the Ameri-

carl Physical Soc ety. '
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The cross section for the photoproduction of 7t~ mesons from complex nuclei at small
angles has been measured at incident bremsstrahlung energies of 4.4 and 6.6 GeV. The
data are fitted by a cross section calculated from a sum of Primakoff and nuclear-pro-
duction amplitudes. A total decay width for the z meson of 8.02 +0.42 eV is obtained
from the magnitude of the Primakoff amplitude.

The Y=O, neutral pseudoscalar mesons decay
into photon pairs. The partial width of this decay
mode can be determined by measuring the cross
section for the photoproduction of the meson in
the Goulomb field. ' Recently we reported the
width of the qo meson measured in this way. ' In
this paper, the results of a similar experiment
carried out for the m meson are given.

A measurement of the w' photoproduction cross

section at small angles was made for photon en-
ergies near 4.4 and 6.6 GeV. Data were record-
ed for targets of beryllium, aluminum, copper,
silver, and uranium. At each machine energy a
set of runs on the five targets was taken with pho-
ton hodoscope counters located directly above and
below the beam line. At the lower photon energy
an extra set of runs was made with the counters
displaced by 15 mrad from the beam line in or-


