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The critical dynamics of a model isotropic ferromagnet is studied in 6 —e dimensions
both above and below T, . The renormalization group and the characteristic frequency ex-
ponents are determined to order c. Implications of the renormalization group are dis-
cussed. A direct calculation of the dynamic response function to order e shows many in-
teresting features, especially for T( T~.

The dynamics of an isotropic ferromagnet near
its critical temperature T, has been of consider-
able theoretical interest. ' 3 Several authors have
pointed out that for the dimension d) 6 the dynam-
ics becomes trivial. ~ For d(6, the understand-
ing is not satisfactory, especially in connection
with the violation of the dynamic-scaling hypoth-
esis. '

The special feature of an isotropic ferromagnet
is that each spin vector tends to precess around
the local magnetic field, i.e., the external field
plus the field produced by neighboring spina. For
a phenomenological description, Iet the three-
component vector field S(x, t) be the spin density
at time t. We define our model by the equation
of motion

BS/at=ad. SxH - rV H+g, (1)

where H(x, t) is the local field, X and I' are con-
stants, and f(x, t) is a random noise simulating
the effect of thermal agitation on the spins. We
assume the local field to be given by the deriva-
tive of F[S], the free energy at the fixed spin con-
figuration K, and write a Ginsburg-Landau form
for F:

H(x, t) = —5F/6S(x, t),

F[f]=2Jd'x[(VS)'+r, S'+ ,'u(S')'--h S],

where ro and u are constants, and h is the exter-
nal field. In terms of Fourier components S„(t)
and E~(t), (1) becomes

BS „BF BF—' =XL QS, x —I'h + f0+0'

where L" is the volume of the magnet and the
wave vectors k are restricted to be less than a

cutoff A. We assume that the noise f has the sta-
tistical property

(r.,(t)r, (t')& =21'h'6, , 5(t —t'). (4)

The model is thus defined. It is closely related
to that discussed by Kawasaki and others. "' We
note the following: (a) The X term in (1) reduces
to the simple form —A.S&&V'S and is closely relat-
ed to the usual Heisenberg equation of motion.
(b) We must keep the quartic terms in F if we are
to have a stable solution below T,. (c) We have
neglected the coupling of the spin to the energy
fluctuation. (d) The I term corresponds to a
streaming velocity4 in the space of S~. The form
of these streaming velocities appears to play a
major role in determining the critical dynamics. '
(e) I' plays the role of a "bare" transport coeffi-
cient which is determined by dynamics over a
short distance A '. (f) If X = 0 this model reduces
to the time-dependent Ginsburg-Landau model
with spin conservation. The effect of nonzero X

is our subject matter.
All physical quantities calculated will be func-

tions of the set of parameters

p, = (X, r„u, It, I").

A renormalization-group (RNG)7 transformation
R» b -1, transforms p, to R,p. = p.

' according to
the following prescriptions: (a) Eliminate S, for
A/b (q(A. This is done by solving the equations
of motion for S„substituting the solution in the
remaining equations, and averaging over t;,.
(b) Replace the remaining S~(t) by O' " S»(tb ')
and I- by M. '. The new equations are then written
in the old form with modified parameters, which
are identified as entries in p. '=R~p, . For exam-
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pie, with h =u = z0 = 0 we have, to order A.2,

r" = b' '[1+ (~/r')'(192~') 'lnb],
gz-i-g/2

We note that only the ratio A/1 approaches a
fixed-point value. Vfe are free to pick either X

or I arbitrarily. If we set 1 = 1 we are simply
choosing our unit of time.

The quantities g and z are so chosen that the
fixed-point equation A, JM*= p, * has a solution.
Our specification of p. in (5) is in general incom-
plete. After the performance of prescriptions (a)
and (b) above, the new equations of motion will
have additional terms of different form requiring
more parameters to specify a complete p, . For-
tunately such complications can be avoided when
all entries in p. are small. Solutj, ons for p, * were
found consistent with the smallness assumption
to order &. There are nontrivial fixed points,
I'= 1

A+ =+ (96m e)i 2 r *=u*=k* = 0
9 0

g = 0, z = 4 —e/2 = 1+d/2,

and there is also a trivial fixed point with zero in
all entries for p, * with z =4, g = 0. The two non-
trivial fixed points are mirror images. We shall
consider only one of them. For p in the neighbor-

hood of p, *, we obtain the linearized recursion
relations

(vb)

(Vc)

x = —e for nontrivial fixed points,

x= e/2 for the trivial fixed point, (8)

and v = 2, y = —2+ e for both eases. The nontriv-
ial fixed point is stable in the sense that, for ~0
= 0, R,p, approaches L[L~ as 5 increases. The triv-
ial fixed point is unstable since 5X grows as b in-
creases. The crossover exponent p associated
with this instability is

Ne shall restrict the rest of the discussion to the
stable fixed point. From the transformation pro-
perties of p, , we easily deduce certain properties
of physical quantities. For example, the linear
response function' G(k, ~, p, ) satisfies

G(k, v, p, ) = b' "G(bk, b "v, R, p, ).

More explicitly

G(k, ~, b&+&* r M)=b'G(bk b+'~ b" b~+x* b""r b'u)

for all b) 1, and k &A/b Set b =.$—= lr, l
"= lr, I

'". We obtain, for p near p, *

G (k, ~, p, ) = $'G (kg, ~t' '", $ 'Q. + A *,ega�„up '+ ').
The usual statement of dynamic scaling' follows
if we neglect g 'and u$ "', which are small
when $ is very large. However, we shall see
that, even though they are small, they cannot be
neglected in certain cases. Equation (10) is all
that the RNG ean tell us about G.

To obtain information not contained in the BNG
analysis, we solved the equations of motion and
obtained G to order ~ by choosing X = ~*. This
choice is for mathematical purposes and is in the
same spirit as Wilson's choice of u, in computing
exponents by perturbation theory. " From (11)
we expect logarithms to appear as a result of e
in the exponents when G is computed by expanding
in powers of e. By setting ~ =A.*, 5~=0, we re-
move the logarithms due to N. $

' to order e.
This helps in identifying the other exponents.

The calculation above T, is straightforward,
whereas the calculation turned out to be compli-

! cated below T, because of the presence of a finite
magnetization M. The details of the calculation
will be reported in another paper. We sketch
some results here, with some brief discussion
for T &T, below. We have calculated the disper-
sion formulas as solutions of G '(k, e) = 0 in the
following cases: (i) T)T, (r, )0), k-0; here

~ = —ik2~,(1 —[~*2/6(64)~'] in~, +. . .]

(ii) T= T„k small; here

(12b)

(iii) T &T„ longitudinal mode (II M), k small;
here

&u= —i(27)k2 ~i2
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(iv) T &T„ transverse or spin-wave mode (&M),
k small; here

&u = h*(7/u)"'k' —i(const && ~ju) "'k', (12d)

so that (p,)„,=0, and

y, =-,' vY(S„~iS,).

Qur equation of motion then leads to the zeroth-

where ~=
I r—, I

= $ 'o-T, —T, and the unit of time
is chosen such that I =1.

All of these results are consistent with z =4
—e/2, (7), and (10). The role of u in assuring
this consistency is evident in the spin-wave case
(12d). One may not ignore u [see (7c)] and hence
the usual form of dynamic scaling appears vio-
lated. Our calculation for G

~, (k, &u) shows that
u plays no role in G

t~ and hence the usual form
of dynamic scaling applies.

A few remarks are in order. (a) The renormal-
ization group transforms the equations of motion,
but does not solve them. It is like the rotation
group in atomic physics. It helps but does not
tell the whole story. It is not surprising that the
exponent z alone may not be sufficient to describe
the characteristic frequency. (b) The result z
= 1+d/2 agrees with well-known dynamic-scaling
and mode-coupling' arguments for d &4 and seems
to be general. The statics for d &4 is of course
very different from that for d &4. In particular,
u*4 0 and the last entry of (10) would be be 45u

+u~ for 4-d small. (c) The statics for d&4 is
often termed as "mean field" or "free field. " But
in our calculation we had to keep many more
terms than the mean-field-theory approach would
keep to arrive at (12) consistently. The statics
is correctly generated by the equations of motion
at least to the order calculated. The verification
turned out to be nontrivial.

Here we supply a few additional details of the
calculation below T,. In this case we must take
into account the nonvanishing value of 8, in the
absence of h. Vfe do this by redefining our fields:

y =S, -M,

order (X=u=0, uM'+r, =0) response functions,

G,'(k, (u) = (- i(ojl"k'+ k' —2r, ) ',

G,'(k, ) =-[t(~+Mhk')+ 1k'] '(I"k'~i) I)
The dispersion relations given by (12) result
from choosing X = X* and self-consistently (renum-
bering M-u ' ') calculating corrections to G' to
second order in ~' and t;o first order in u.
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