VOLUME 33, NUMBER 3

PHYSICAL REVIEW LETTERS

15 Jury 1974

Variational Bounds on the 1s—Charge-Exchange Amplitude
in Proton-Hydrogen-Atom Scattering*

David Storm and Donald Rapp
The Univevsity of Texas at Dallas, Richardson, Texas 75230
(Received 3 April 1974)

With a relatively simple trial wave function, nontrivial variational bounds are obtained
on some transition amplitudes for the 1s—charge-exchange reaction in the impact-param-
eter model for H*-H scattering. Preliminary results imply that the two-state traveling
molecular expansion is superior to the two-state traveling atomic expansion below 25
keV, that the Euler-Lagrange variational method is not necessarily superior to the static
method, and that neither is the “best variational method.”

Proton—-hydrogen-atom scattering in the keV
energy range is customarily described by the im-
pact-parameter model for ion-atom collisions.!
Within the framework of the impact-parameter
model, it has been possible to derive upper and
lower variational bounds which bracket the exact
transition amplitudes for the excitation and charge-
exchange processes,?"* and therefore it is pos-
sible, in principle, to calculate exact amplitudes
in a variational calculation. In addition, it has
been proposed that the error function

Ak = [ 1D at (1)

be used as a measure of the error in the calcula-
tion in which y, is the approximate or trial wave
function corresponding to the initial state n.%"*
The quantity IID(x,) Il is the norm of the deviation
vector in the Schrédinger equation:

D(x,)=(H—-i8/0t)(xpn— ¥) = (H—-i8/3t)x,, (2)

where i, is the exact solution, and H is the Ham-
iltonian for the impact-parameter-model sys-
tem.! The quantity x,—¢,=0y, is the variation
about the exact solution @, represented by the ap-
proximate wave function x,; therefore ID(x,)l is
the error (per unit time) in the Schrédinger equa-
tion, and so A, is a natural measure of the error
in the calculation.®*"* Variational bounds on the
exact 1s—-charge-exchange amplitude 4, can be
written as follows®™*%

|Clsl - AlzS I‘4lsiS |Clsl+ Ak’ (3)

where C,, is a second-order accurate approxi-
mation to the exact amplitude A, obtained with
the trial wave function y,,,* and A, is either the
first-order bound A, (the error function defined

above), or the second-order bound,
8,=324,7%

(4)

on the second-order error term in the variation-
al principle previously given.*"* As previously

discussed,® trial wave functions are customarily
generated by expressing the approximate wave
function as a time-dependent linear combination
of a suitable finite set of basis functions, and the
linear expansion coefficients, which are ultimate-
ly interpreted as approximate transition ampli-
tudes, are determined by solving the usual set of
coupled equations. In this preliminary study of
the 1s—charge-exchange reaction, we have been
concerned with three questions: (1) What are the
magnitudes of the bounds A, and A, for some
common trial functions, and does it appear to be
practical to use the variational bounds in Eq. (3)
to calculate exact amplitudes? (2) In what energy
range is the traveling-molecular-type expansion
superior to the traveling-atomic-type expansion?
Aspects of this question have been discussed by
Ferguson,® McCarroll, Piacentini, and Salin,®
and McCarroll and Piacentini,” (3) Is the Euler-
Lagrange dynamic variational method used by
Cheshire® and by McCarroll, Piacentini, and
Salin® superior to the static variational method
in which the variable parameters in the basis
functions are determined by minimizing the well-
known energy functional? A simple “two-state”
trial wave function was used in all of our calcula-
tions. The orbitals in the basis functions were
atomiclike functions with variable parameters.
The most sophisticated orbital utilized was a 1s-
hydrogen-like orbital containing a variable nu-
clear-charge parameter, plus a polarization
parameter multiplying a 2p,-hydrogen-like orbit-
al containing another variable nuclear-charge
parameter.

In our first series of calculations we were only
concerned with the effect of a variable nuclear
charge in the 1s orbital, and so the orbitals were
simply 1s-hydrogen-like functions with variable
nuclear-charge parameters. Some of the values
obtained for the error function A, in these calcu-
lations are shown in Fig. 1. The charge-exchange
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FIG. 1. Absolute value of charge-exchange amplitude
|C4s] (corresponding to no-parameter case) and error
function A4 for various two-state trial wave functions
(see text) versus impact parameter B.

amplitude IC, | (corresponding to the no-param-
eter case, see below) is shown in Figs. 1-3 for
orientation. The charge-exchange cross section
is largely determined by the outer oscillation in
the amplitude curve, and so it is these ampli-
tudes that we wish to calculate most accurately.
The A, curve marked NP (no parameters) cor-
responds to an atomic-type expansion, a two-
state traveling hydrogenic expansion. The A,
curve marked DP (Dalgarno and Poots) corre-
sponds to a molecular-type expansion, a two-
state traveling molecular expansion where the
approximate molecular orbitals are linear com-
binations of atomiclike functions with nuclear-
charge parameters determined by minimizing the
energy functional.® The point marked MPS cor-
responds to a calculation in which the variable
charge parameters previously given by McCar -
roll, Piacentini, and Salin® were used, and the
fact that this point is above the DP curve indic-
ates that within the framework of the two-state
approximation the static variational method is
superior to the dynamic Euler-Lagrange pro-
cedure for this parameter at an energy of 2 keV.
The A, curve marked AF (arbitrary functions)
corresponds to a calculation in which arbitrary
functions were used for the variable nuclear-
charge parameters, and the fact that this curve
lies below the DP curve and the MPS point in-
dicates that neither the static nor the dynamic
variational methods is best for this problem.

In the second series of calculations we were
only concerned with the effect of a polarization
parameter; in this case, the orbitals were 1s-

hydrogen-like functions plus a polarization param-
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FIG. 2. Absolute value of charge-exchange amplitude
|Cy4l (corresponding to no-parameter case) and error
function Ay for various two-state trial wave functions
(see text) versus impact parameter B.

eter multiplying a 2p,-hydrogen-like function.
The nuclear scale factors were taken as con-
stants. Some of the results of this calculation
are shown in Fig. 2. The A, curves marked NP
and DP again correspond to the same atomic and
molecular expansions discussed above. The A,
curve marked S (static) also corresponds to a
molecular-type calculation: In this case the ap-
proximate molecular orbitals contained only
polarization parameters. The A, curve marked
EL (Euler-Lagrange) corresponds to an atomic-
type expansion with a dynamically determined
polarization parameter. The molecular-type ex-
pansions again appear superior to the atomic-
type expansions, and the static variational meth-

FIG. 3. Absolute value of charge-exchange amplitude
ICysl| (corresponding to no-parameter case) and error
function A4 for various two-state trial wave functions
(see text) versus impact parameter B. Values of the
second-order bound A, are also shown on the same
right-hand vertical scale as A;.
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od again appears superior to the dynamic Euler-
Lagrange procedure.

The most sophisticated orbitals were used in
the last series of calculations: The orbitals were
1s-hydrogen-like functions with a variable nu-
clear-charge parameter plus a polarization pa-
rameter multiplying 2p,-hydrogen-like functions
with a variable nuclear-charge parameter. The
parameters in the orbitals were determined by
minimizing the energy functional,'® and we be-
lieve these orbitals are adequate representations
of the 1so, and 2po, molecular states. Values of
the error function A, obtained in these calcula-
tions are shown in Fig. 3. The A, curve marked
NP again corresponds to the atomic-type expan-
sion discussed above; the A, curve marked D
corresponds to the molecular-type expansion in
which the 1so, and 20, orbitals'® were used;
and the A; curve marked AF again corresponds
to a calculation in which an arbitrary set of pa-
rameters were used. The fact that the D curve
is lower than the NP curve is good evidence that
the two-state traveling molecular trial wave func-
tion is superior to the two-state traveling atomic
trial wave function. We also show values of the
second-order bound A,. It is interesting to note
that the second-order bound is slightly smaller
than the amplitudes in the range of impact pa-
rameters 3.5-5. We are extremely encouraged
by this result, considering the simplicity of the
trial wave function.

In conclusion, our results tend to indicate that
the traveling-molecular-type expansion is supe-
rior to the traveling-atomic-type expansion in the
energy range 0.1-25 keV, and that the dynamic

Euler-Lagrange variational method is not neces-
sarily superior to the static method in this ener-
gy range. Finally, it is encouraging that a bound
A, which is the same order of magnitude as a
transition amplitude can be calculated with such
a simple trial wave function. It is well known
that the simple two-state approximation is in-
adequate even for the lower energies.''"'? With
the addition of more states, there is a likelihood
that A, can be reduced to the point where non-
trivial bounds on the 1s—charge-exchange ampli-
tude can be obtained.
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