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The correct asymptotic behavior of the wave function deduced from the Faddeev equa-
tions for three-particle scattering is used to determine the asymptotic conditions. With
these conditions, the equivalent set of partial differential equations in configuration space
has a unique solution and is numerically solved for two examples. Comparison is made
with results from two other basically different methods.

The Schrodinger equation for the two-particle wave function is known to have a unique solution for
given asymptotic boundary conditions. For three mutually interacting particles the asymptotic behav-
ior of the wave function was insufficiently known to determine it. Faddeev proposed a set of integral
equations in momentum space to avoid this difficulty. ' Using the Faddeev results for the momentum-
space behavior of the wave function, one can deduce its correct asymptotic form in any direction of
configuration space. ' ' The boundary conditions obtained in this way make the solution of the Schroding-
er equation unique. The configuration space having proved to be suitable for finding the bound-state
wave function in realistic cases such as 'H and 'He by using the Faddeev equations rather than the
Schrodinger equation for purely practical reasons, ' we are led to make the same attempts for scatter-
ing states.

The Faddeev equations expressed as partial differential equations in configuration space read

[(k'/m)(E-„+ 6& )+E —V,(x,-)]g~ '(x, , y,) = V,(x,)g [0,,y, (x,) exp(iq, y, )+ (-, (x, , y,.)], (1)
jr4 j

where x,. stands for the distance between particles j and k, and &3y,./2 is the distance between particle
i and the center of mass of the j-k pair; this pair interacts via the potential V, , supposed here to have
only one bound state, the wave function of which is y,(x,.). For simplicity we have considered here
particles of equal mass m, and our Eq. (1) is specialized for the scattering of particle 1 with initial
relative momentum 2q, /v 3 on the bound state of particles 2 and 3.

We seek a smooth bounded solution of the set (1) whose behavior for large hyperradius p= (~,.'+ y,.')'"
is

g- ' = U'(x, , y, ) + U, '(x, , y,.),

where

U'(x;, 3;)= I;(x;)[&'(3;)+ o(3, ')] exp(W;y;)/y;,

in which the relative momentum between free particle i and bound pair j-k is 2q,./v 3, and

U. '(x;, y;) = [&.'(~;, S;,~;/y;) + o(p ')] exp ti(~&/k ')'"pl/t '".

(2)

(3)

(4)

We require that the unknown amplitudes A' and A, ' be smooth and bounded functions. Then one can
show that the solution of the set of partial differential equations (1) with the boundary conditions (2) is
unique and the same as the Fourier transform of the solution of the Faddeev integral equations. It is
important to note that the asymptotic form (2) is true in any direction but the first term on the right-
hand side is dominant in the small-x, . region. Once the set (1) is solved, the wave function is given by

3

4-„,(x„y,)= A(x, )exp(q y, )+Z 0-„, (x;, y, ). (5)
'l

Then the amplitudes A' describe elastic and rearrangement processes while the breakup amplitude is
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obtained from the sum of amplitudes A, '.
In order to illustrate the usefulness of the set of equations (1) with boundary conditions (2), we pre-

sent their numerical solution for two different situations. First, we consider the S-wave scattering of
a spinless particle on two identical bound particles. The potential is of Gaussian form acting in rela-
tive S state only. ' The set (1), once symmetrized, becomes

[(~'/m)(8'/ax'+ 8'/83')+E —l'(x)] 4(x, 3) = l'(x) J- «(xy/x'3 ') IP(x')»n(qy')+ ((x', 3 ')]

for the unknown g(x„y,) =x,y, g-„'(x„y,), where

x'= —,'(x' —2&3 xyu+ 3y')'", y'= Qy'+ 2v 3 xyu+ sx')'",

and h'/m = 41.496 MeV fm'; while the asymptotic condition (2) becomes

g(x, y) = [A+ O(y ')] y(x) exp(iqy)+ [A,(x/y) + O(p ')] exp [i(mE/8')'"p]/p'~'. (7)

The radial part of the two-particle bound state is
q(x) and the constant amplitude A is connected
with the phase shift 0 and absorption coefficient
g through the usual relation

A = (r) e"~ 1)/2i.—

The whole process of solution is the generaliza-
tion of the usual method to solve the two-body
Schrodinger equation. We use here a finite-dif-
ference approximation for Eq. (6) in the variables
p and 6=arctan(y/x); then, starting from the ori-
gin, where the solution is regular (g = 0 on both
axes) a step-by-step elimination determines the
real matrix of an inhomogeneous linear relation
between values of g on two neighboring arcs of
circle. The rank of this matrix is only the num-
ber of discretized 6 values. This process is con-
tinued until a value of the radius p is obtained
large enough to be in a domain where the asymp-
totic form (7) is true. The discretized asymptotic
form (7) will lead us to another (homogeneous)
linear relation between the values of g on the last
two arcs of circle once the unknowns A and A, (6)
are eliminated. For this, we first get rid of
A, (6) by considering the ratio of the quantity

g(x, y) —Ay(x) exp(iqy) on the two arcs; then A is
eliminated by taking it as the value of ((x, y)/
y(x) exp(iqy) for x small enough so that the be-
havior y(x) exp(iqy) is dominant. ' The complex
coefficients —when E &0 of this linear relation
together with the real coefficients of the first
linear relation enable us to find the values of g
on one of the arcs. Finally the amplitude A is
just given by the ratio g(x, y)/qr(x) exp(iqy), x
small, and then the amplitude A, (x, y) is obtained
by identifying the solution with its asymptotic
form (7).

The numerical accuracy is checked by examin-
ing the stability of the results with respect to
the discretization and the radius of matching with

TABLE I. Phase shifts and absorption coefficients
for scattering of three identical particles with Gauss-
ian interactions (Ref. 6).

(MeV) (deg)

—1 6
—0.6

10
20

66
33

—12

—57

0.93
0.75
0.50

the asymptotic form. There are other less trivi-
al tests: (i) The values of g on an arc of circle
enable one to compute the solution everywhere,
so that one ean compute again the amplitude A by
its usual integral expression; the consistency of
values of A is a useful check. (ii) Below the
breakup threshold —E & G the absorption coeffi-
cient g should be equal to I, providing an easy
check.

In the present model computation the results
become stable when the matching radius is great-
er than 28 fm and the agreement between differ-
ently computed values of A varies from 1'%%u& to
10% in the worst case (small IAI) while, for E
&0, the absorption coefficient is found to differ
by less than 0.5% from unity. We give some
phase shifts and absorption coefficients in Table
I. Comparison with results obtained by Revai
and Raynal' shows an agreement within 3' for the
phase shifts below threshold and within 10% for
elastic cross sections above threshold. In any
case, the significant figures in Table I reflect
the estimated accuracy of our results.

Our second example deals with the somewhat
more realistic situation of n-d scattering in an
L = 0, J= z state. With the Yukawa type -III po-
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tential used by Kloet and Tjon, ' which has a soft
repulsive core, we find the phase shift '5, =68
and absorption coefficient 'g, = 0.97 at E ~ I,

= &4

MeV, to be compared with the results '6, =72.5

and 'g0=0. 975 obtained in Ref. 8. At E»&"-—46.3
MeV we find '5p 35 Qp 0 90 compared to
38.7' and 0.883. At E»&"——3.27 MeV our results
were unstable, possibly because of threshold ef-
fects which will require special treatment. In
view of the present state of the three-body scat-
tering problem and the fundamental differences
of the methods in Refs. 6 and 8, we find this gen-
eral agreement rather promising.

Our above-described approach has the advan-
tage of providing a direct solution to the problem,
thus being free from any convergence considera-
tion. The discretization problem which remains
arises anyway with all other methods. The di.-
rect solution is made possible by the use of con-
figuration space since the local nature of differ-
ential operators (compared with integral opera-
tors) makes the rank of matrices we have to
handle an order of magnitude smaller than for
the direct solution of Faddeev integral equations.
Moreover the use of configuration space gets rid
of any singularities usually associated with the
momentum-space integral equations. The prac-
tical advantages of this method are similar to

those that the Schrodinger equation has over the
Lippmann-Schwinger equation. Finally we are
here faced with the preliminary problem of build-
ing the two-body bound-state wave function rath-
er than the two-body t matrix occurring in the in-
tegral equations, which is much easier for the
same reasons. Taking advantage of the great
simplicity and efficiency of this method, we are
presently dealing with the realistic problem of
three-nucleon scattering with a tensor force.
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A relatively bias-free comparison is made of inclusive and semi-inclusive charged-
pion single-particle spectra in 7i.+p and pp interactions. Inclusive Mueller factorization
is satisfied by m but not m production. Factorization holds for proton-target fragmen-
tation into m for a fixed number of x backward in the c.m. system, but not for fixed
total multiplicity. In the central region, 7(.+p —7r~ shows an s approach to the same
value, -0.78, seen in other reactions.

We report results of an exposure of the Fermi
National Accelerator Laboratory 30-in. hydrogen
bubble chamber to an unseparated but tagged &'
and p beam at 100 GeV/c. The mixed beam a,l-
lows comparison of the secondary pion spectra
from high-energy n'p and pp collisions with mini-

mum biases, providing an excellent test of factor-
ization: independence of secondary spectra from
the identity of the incident projectile.

While fa,ctorization is an important experimen-
tal matter in itself, it is of particular interest
and perhaps crucial to Mueller-Regge theory.
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