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The compressible Ising-like model of Larkin and Pikin is equivalent to a constrained
Ising model, as was recently shown by Sak, I introduce finite pressure effects into this
system and find that the Ising transition is first order at low pressures and second or-
der “renormalized” at high pressures. The tricritical pressure is equal to the rigidity
modulus for the model, but will be lower for more realistic systems. The spherical
tricritical point and Gaussian tetracritical point are also observable in principle as the

pressure is varied.

The modifications of a regular second-order
magnetic phase transition due to the coupling of
the magnetic system to the elastic degrees of
freedom are not very well understood at the pres-
ent time,  Many conflicting results exist regard-
ing this question. The first discussions of these
effects!”® predicted that close enough to the tran-
sition temperature 7., the transition will become
first order if the specific heat of the incompres-
sible system diverges at T, (as is the case for
the Ising model). Later,*'® arguments have been
put forward against this first-order transition on
the grounds that, for example, the internal fluc-
tuations should prevent the instability that is con-
nected with the first-order transition. In an ex-
actly solvable compressible Ising model, due to
Baker and Essam,® and in a related class of con-
strained systems,® one has the exact results’*®
that the transition is first order at negative pres-
sures (see, however, Ref. 8, and Bergman, Imry,
and Gunther®) and second order for positive pres-
sures. These models are unphysical because
they have a vanishing rigidity. On the other hand,
for models that are infinitely rigid, “magneto-
thermomechanics”?® or the Domb-Rice ideas hold
leading to a first-order transition for all pres-
sures. It was stated in Ref. 7 that a simple con-
tinuity argument would suggest that a first-order
transition at low pressures becoming second or-
der at a tricritical pressure P; would be consis-
tent with all these results, provided that P,=0
for zero rigidity and P; -~ when the rigidity
modulus u becomes large. This conjecture was
consistent with approximate results of Baker and
Essam,'® but it appears to be at odds with the re-
sults of Larkin and Pikin'* who gave an essential-
ly exact treatment of a more realistic model with
a finite arbitrary value of u and found that the
transition was first order for any value of P.
More recently, Wegner'? and Horner'® have con-
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firmed the Larkin-Pikin result, giving a special
emphasis to the surface effects. Sak,'* using the
fact that the Larkin-Pikin model is equivalent to
a constrained Ising model (this model was treated
by Rudnick, Bergman, and Imry'®), also obtains
the result that for finite rigidity the transition is
always first order.

It is the main purpose of this Letter to attempt
to settle this theoretical question by showing that
taking into account finite deformation effects in
the Larkin-Pikin model leads to the existence of
a finite P, equal to the rigidity modulus p. The
order of the transition depends on P — u via the
pairing term'® in the Hamiltonian [ see Egs. (9)
and (10)]. This exact result is in line with the
conjecture of Ref. 7 and thus agrees with both
the Baker-Essam model (u - 0) and the Domb-
Rice result (valid for @ —~=). The tricritical
point at P; is one which occurs in a constrained
system. The general theory®-®'® of the critical
and tricritical phenomena in such systems is
thus applicable here. Our treatment is also rele-
vant to the question of the dependence of the re-
sults on the boundary conditions at the lattice
surfaces. In agreement with general statistical
mechanical arguments,'® no such dependence ap-
pears to exist. The dependence is only on the
macroscopic constrvaint, P, but not on the sur-
face effects.

The value of P, obtained is quite high, on the
order of 10° bar for typical materials. Thus,
in order to make contact with existing experi-
mental results,!” we show that the value of P, is
sensitive to higher-order terms, not included in
the model, and to lattice anisotropy. Anharmonic
effects may also be important.

We assume the Hamiltonian treated by Larkin
and Pikin'! and Sak'*:

H=H,+H, +H,,,, 1)



VOLUME 33, NUMBER 21 PHYSICAL REVIEW LETTERS 18 NOVEMBER 1974

where H,, is a usual Ising-like field-theoretic model in a d-dimensional space,

Hm:fyodsx[§70¢z(§)+%(vll))2+uo¢4]. (2)

H,, is the elastic part, with U(X) the deformation vector; for P =0, H, favors a volume V, for the
crystal:

Hel:fvo d3x [(%—%) (V-G)2+ua.§<%§>1, (3)

where K is the bulk modulus and u the rigidity modulus. H,,, is the magnetoelastic coupling (assumed
to depend only on the longitudinal strains) characterized by a coupling constant g:

Hinp=g [y d*x42()V 3, (4)

It is convenient to separate, for a given crystal volume V, the elastic deformation into two parts: a
uniform, possibly large, dilation (from the volume V,) characterized by constant values u 5, of du,/
9x, (uniform shear deformations are easily integrated upon and lead to no relevant effects), and elas-
tic vibrations 6U(X) within the volume V. The latter can be expanded in normal modes:

-

)= T el T, (5)
k+#0

where the allowed values of k are determined by the boundary conditions. It is convenient to adopt
periodic boundary conditions, but it is essential, when V is varied, either to change the boundary con-
ditions accordingly or to keep defining 8u(x) for x in the volume V,, with the same boundary conditions.
We shall use the latter method, with periodic boundary conditions in the volume V,. As usual in solid
state physics, bulk properties will not depend significantly on the details of the boundary conditions.
The elimination of the elastic degrees of freedom is now done in two steps.

(a) Integration on U,: The Gaussian integrals on the transverse components are irrelevant for the
critical behavior. When integrating over the longitudinal components one obtains, after completing the

square, a ¥*-like term, which can be written as

(K d=1 \]7 .1
~e*[4(5 151 )T, e ‘f"oﬁ‘”ﬁ""ﬁ‘”a““ﬁ}’ (©)

where the second term had been added and sub-
tracted. The first term is a modification to «,

K d-1 -t
ueff:uo_gz [4<_§+ d IJ‘>} s (7)

which, as noted by Aharony,!® will lead to a first-
order transition, and possibly to a tricritical
point, if g is large enough to make # ;< 0. Let
us assume that g is small enough such that u ¢
>0. Were an experiment done at a constant vol-
ume, %4, would be constants and the effective
Hamiltonian would be (1) + (6) [with « ¢ from (7)].
This is the same as the constrained Ising mod-
el**'1% and will lead, because the coefficient of
the quartic term u ;¢ is positive, to a “renor-
malized Ising” critical behavior.® The same
kind of behavior was also obtained for the Baker-
Essam model at constant volume.®”

(b) If one is interested in a constant pressure,
the components « ., have also to be integrated
upon, in the following way: A term +PV is added
to the Hamiltonian; we express V in terms of the

U

V=V0[1 +2 U e+ 24 Uqotgs+0@®)], (8)
o a#B .

and integrate over #,,. The O@?) terms are im-
portant for finite deformations that may be due

to high pressures or strong magnetoelastic cou-
pling. They were neglected by Larkin and Pikin,!
Wegner,'? and Sak,'* whose treatments thus apply
only for low pressures. Theu ., integrals lead

to a new pairing term in the effecitve magnetic
Hamiltonian [it is important to include the term
3K(D, 4o)? in the energy of the uniformly strained
crystal] which, when added to the one in (6),
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gives
(4
Hy=5= 25 ¥3d-glqd-q, (9)
0D, 4
with
()7 (E221)
9= <2 g * st ?) |-

The total effective magnetic Hamiltonian is

Hp,er0= J, @°%[792() +3(V9P +ud*] +H,, (10)

where # =u ¢ [ Eq. ()] and »=7,-gP/2{z K
+[@=-1)/d]p}.

H, .¢f leads to a first- or second-order tran-
sition according to whether 6 <0 or 8 >0, respec-
tively; thus the tricritical pressure is P, =y,
which is an exact result for this model. This tri-
critical point exists for any value of g. The criti-
cal and tricritical behaviors around this tricriti-
cal point are those characteristic of constrained
systems.® In the renormalization-group language,
the tricritical point corresponds to the Ising
fixed point.!® The tricritical behavior is Ising-
like and the critical behavior is “renormalized-
Ising-like” (as for the case of constant volume
discussed above). In addition, for P>P,, if g
changes as a function of P or other thermodynam-
ic variables such as to drive u .¢+¢ negative [Eq.
(7)], another tricritical point is possible. This
corresponds to the “spherical” fixed point.!® It
is very interesting that the observation of “spher-
ical” critical behavior is thus possible in princi-
ple. Finally, the Gaussian fixed point, at which
both # .¢r and 6 vanish, is a fourth-order critical
point where two tricritical lines (6 =0, % ;¢ >0 and
#o¢s=0, 6>0) meet.'® This is the point found by
Aharony!® We note that the change inu . [Eq.
(7)] does not appear in the Baker-Essam case,
which is not a field-theory model.

It is important to emphasize that the rather
high value of P; = is an exact result only for the
model characterized by Eqs. (1)=(4). If higher-
order terms are included, new terms will appear
in the effective Hamiltonian. An important one
is, e.g., the sixth-order pairing term

£ 20 Y3 ¥-5,05,9-3,a,0-3,
d; 9293
although “irrelevant” (in the renormalization
group sense), it will change the value of the tri-
critical 8, and will make it negative. This is be-
cause this term will feed positive contributions
into the renormalization group recursion rela-
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tions for 6. Also, higher-order magnetoelastic
terms and lattice anisotropy have been shown®®
to shift significantly the tricritical pressure.
Anharmonic terms may also have an important
effect.

Thus, unfortunately, we are not able to com-
pute P; and compare with experiment. But we
know that P, is finite and that the order of the
transition depends upon the pressure. The tri-
critical point in NH,CL'" with P,=1.5 kbar, may
well be of this kind, although other interpreta-
tions are possible.'®2° Another important ques-
tion is what is the “size” of the first-order tran-
sition. For the Baker-Essam and related models
it is given’ by A'/® where a is the specific-heat
index of the Ising model and A a parameter pro-
portional to g% and to |P —P,|.' Because of the
probable large values of 1/« (the best current es-
timate is 1/a = 8), A% 4g g sensitive function of
A, and the first-order transition may be impos-
sible to observe for A~0.1. However, once A~1
(as may well be the case for NH,C1), thr first-
order transition and the region where renormal-
ization is important for the second-order transi-
tion increase sharply with | P - P,| and become
easily observable, We have not discussed here
the case in which > 2, where the situation is
different'* because probably a <0. The relevance
of our results there is that the value of 8 can be
manipulated by varying the pressure, which may
enable one to get, e.g., a renormalized Heisen-
berg critical behavior for an appropriate value
of P.
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Aprom Eq. (80) of Ref. 7b one finds, for the model of
Ref. 7a, that up to a numerical factor of order unity,
A=Y,,,2(Tc 6,/0 DQ)P/K, where v,, is the magnetic Griin-
eisen constant v,,=9In7,/81nV, 6p is of the order of
the Debye temperature, and 6, is a characteristic lat-
tice temperature, kg6, =k?’/Ma®, where M is the mass
of the atom and « is the lattice constant. For a model
where P, >0, P should be replaced by | P~ P;|.
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We report a result of (1+4) X107 for the parity-nonconserving component in the p—p nu-
clear cross section at 15 MeV, Our experiment uses rapid spin reversal of a longitudi-
nally polarized proton beam and an unpolarized H, target. Sources of systematic error

are discussed and found to be <107,

The presence of weak interactions between ha-
drons, which is implied by the current-current
form of weak interaction theory,' has been estab-
lished by observations of parity mixing in many
nuclei.? However, no quantitative agreement
exists between theory and experiment, either for
heavy nuclei, where nuclear-structure effects
complicate calculations, or for the lightest sys-
tem with a reported effect, np —dy.>** This lack
of agreement emphasizes the necessity for study-
ing the nucleon-nucleon system through p-p scat-
tering is estimated to be a few parts in 107, the
actual effect, which is sensitive to the details of
the interaction including the possible presence of
neutral currents, could be considerably different.
The smallest previous experimental upper limit
on the magnitude of the parity admixture in p-p
scattering is 5x107® at 210 MeV.” Order-of-
magnitude improvements are needed to test the
various models of the weak interaction.

Our experiment is sensitive to the pseudoscalar
term G- in the total nuclear cross section aris-

ing from the interference between the parity-
conserving and parity-nonconserving parts of the
scattering amplitude. (& is the spin and ) the
momentum of the incident proton.) This inter-
ference is observed by scattering a longitudinally
polarized proton beam on an unpolarized hydro-
gen target and detecting the change in the total
nuclear cross section when the polarization is
reversed.

A 200-nA beam of longitudinally polarized pro-
tons from a Lamb-shift ion source® is accelerat-
ed to 15 MeV at the Los Alamos tandem Van de
Graaff accelerator and strikes an H, gas target
(Fig. 1). A two-stage fast-steering system with
feedback stabilizes the beam position and angle
at our detector, reducing movement of the beam
by a factor of ~50.

A measure of the total cross section is obtained
by detecting the scattered beam over a solid an-
gle of nearly 4n. To realize adequate statistical
accuracy in a reasonable time, the scattered
beam current (~3 x10° protons/sec) is measured
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