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(3) for any numerical calculation of 8T~/8P for
Nb, sn. A similar calculation on dTc/dP, includ-
ing the interband charge-transfer effect, can be
done.

In conclusion, we have observed for the first
time pressure-enhanced lattice transformation
in a high-T c superconductor. The opposite pres-
sure-effects on T~ and Tc of Nb, Sn and V,Si can
be explained in terms of the WLF model by tak-
ing into account the pressure-induced interband
charge transfer. Previous atmospheric results
on T~ and Tc of doped Nb, Sn samples were dis-
cussed and an expression for dTz/dp was also
obtained.
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Variation of T, with Electron-per-Atom Ratio in Superconducting

Transition Metals and Their Alloys
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A microscopic explanation is given for the variation of the superconducting transition
temperature T, with the electron-per-atom ratio in transition metals and their alloys.

As was first noted by Matthias, ' if one plots
the superconducting transition temperature T,
against the electron-per-atom ratio & for various
metals, one obtains a, two-peaked curve with max-
ima, at & ~ 4.5 and at 8 —6.5 and a deep minimum
at & —5.5. This is the most consistently obeyed
empirical rule relating T, to a normal-state prop-
erty and it has often proved to be of practical sig-
nificance in searches for high-T, materials.
The purpose of this note is to provide a first-

principles understanding of how such behavior
arises as a consequence of interactions between
electrons and phonons in a metal.

According to McMillan's solution of the strong-
coupling gap equation

(co) 1.04(l + X)'= t.~
'"' -i:y'*(|+O.S2—.

) I
where p, * is an electron-electron interaction pa-
rameter which may be set equal to 0.13 for all
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the transition metals, (ru) is a suitably averaged phonon frequency defined by Dynes, and A is the
mass enhancement factor. Furthermore, it is useful to write

A. = (M(uF)) 'n(c~)(I'), (2)

where M is the ionic mass, n(& F) is the density of states at the Fermi energy e„, , (cu') is an average
of phonon frequencies as defined by McMillan, and (I') is the average of the electron-phonon matrix
elements over the Fermi surface. To a good approximation'(tu') = Jdco~&(~)/f d~ ta& 'E(&o) and (&u)
= 1/J d &u ar 'F(&u), 4 where E(~) is the phonon density of states, and

2M d'4 d'Q'
(I ) Nn'(e ) (2m)' J (2w)3ZQg k, , lgg, g ~l ( k) ( k),

where K is the number of atoms per unit volume, the q k, 's are the bare phonon frequencies unre-
normalized by their interaction with the electrons, e q and &q. are Bloch-state energies measured from
eF, and g@ I, , is the matrix element of the electron-phonon interaction which takes an electron from
the state k (denoting both wave number and band index) to the state k' with the simultaneous emission

~+P Ior absorption of a phonon with wave number q = k —k' and mode index v.
It is now well established that Eqs. (1) and (2) provide a good account of the variations of T, if

n(eF)(I2) is calculated from first principles and both (tv2) and (v) are estimated empirically. ' How-
ever, one notes with dismay that although & depends explicitly on n(eF), which varies by an order of
magnitude across the periodic table, the product n(e „)(I') turns out to be much the same for all tran-
sition metals. Hence, in order to have a real understanding of the trends in T„we need a, first-prin-
ciples theory of (~').

Consider a system of interacting electrons and phonons described by the Hamiltonian

H=geTCT, Cp+ Q Q, (g- ty-, +~) +„Q guv+q; ,vCv Cu+q(bq v+5-q p )
k

where C k~ and C ~, respectively, create and annihilate Bloch electrons; b~, ~ and b~, do the same for
bare phonons, and all other symbols have been defined previously. For one-electron states, we have
in mind the results of a band-structure calculation based on an electron-ion potential constructed ac-
cording to the Mattheiss prescription. ' Unlike pseudopotentials, such potentials include some electron-
electron interactions, and we shall assume that no further screening is necessary. Similarly, for
Qq, we do not take the bare plasma frequency of the ions. It is difficult to be more specific than that.
A consistent prescription would be to construct the bare force constants from a neutral-atom inter-
atomic potential calculated from the atomic charge densities. Fortunately, for the sake of the present
discussion, it will suffice to assume that the Qq, 's are the result of those direct interactions between
ions which do not depend on the band structure. Finally, for g& &+q. -, we take the rigid-ion prescrip-
tion. We believe that such a description is appropriate to transition metals.

Because of the interaction between the electrons and phonons the bare force constants are softened
and a convenient way of calculating the new frequencies ~-, is to write'

&u- „2=Q-, 2 + 2Q", ReII „(q; &u = 0), (5)

where 11,(q; &u) is the phonon self-energy and using the adiabatic approximation we set ~ =0. We now

approximate II, (q; co) by the first bubble diagram in its series expansion and write

11,(q;~)=-»f(«/2w) Zplg;, ~, q, , l G,(k;&)G,(k+q;&+~),

where G,(k; e) is the usual time-ordered Green's function for the unperturbed Bloch electrons. To-
gether with the appropriate definitions, Eqs. (5) and (6) constitute the microscopic lattice dynamics
we seek. This theory is still intractable; therefore, we make two further approximations.

First, we assume that, to the accuracy we need, we can replace (~')M, M by (ar'), =-(SN) 'gq, ~q „'
and take (cu) to be (&u')/l. l.

Second, in calculating

(~ ) =(Q ) +(3N) Q 2Qq ReII (q;(v=0),

i287



VOLUME 33, +UMBER 21 18 NovEMBER 1974

where (Q')o—= (3X) 'Q ~,Q~, ' and the relation was obtained from Eq. (5) by summing over q and v on
both sides, we evaluate ReII, (q; 0) in the following manner. We use the Kramers-Kronig relation,
l.e.,

ReII, (q; 0) = —2 J d(u II '(u ' ImII „(q; (u)

and note that, quite generally, Imll, (q, cu) starts linearly with tu from the origin and cuts off at some
frequency &u, . This suggests that we approximate ImII „(q; &u) by ~S ImII „(q; &u)/& ~ ( „,and take

I

ReII, (q, 0) = —(2/w)(u,
O ~

We now substitute Eq. (8) into Eq. (8) and use the resulting expression for Reii, (q, 0) in Eq. (7) to
obtain

(~ &o=(Q )0 —-'- Z ~ Qk-k, .~A'k, k', ~ &(~k)~(~l )
3N ' 2w)' (2m

' (9)

where the energies &q and &~ are measured from the Fermi energy, &F. Some details of the entirely
straightforward manipulations leading to Eq. (9), and a discussion of the validity of the above approxi-
mations, will be given elsewhere.

Observe now that the second term on the right-hand side of Eq. (9) is proportional to n(eF)(I') given
in Eq. (3). Thus, by estimating the cut of frequency v, from a, free-electron model to be —,'eF, we may
summarize the above discussion by writing

(~2)=(~'), = (Q'), —-', ~,n(~, )~-'[n(~ „)(I')].
From a technical point of view this is our main
result. It shows how (u&') depends on the band
structure and the Fermi energy. Here, however,
we are more interested in what the softening of
the mode does to ~ and therefore 7.",. From Eqs.
(2) and (10) we have that

A. = A.,[1- -', e pn (e F )A.o] (11)

where X, =n(cF)(I')/1'd'(Q')„ l.e., the electron
mass enhancement due to the unrenormalized pho-
nons. As we expect n(e, )(I') and (Q'), to be
roughly the same for all the transition metals„
we assume that A.o is a constant in b. In Fig. 1
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we show a plot of empirical values for X ' versus
eFn(e~) for a number of transition metals For.
n(e F) we used the empirical values of McMillan'
and eF was determined by the rigid-band assump-
tion and Mattheiss's TV, band structure calculation
for tungsten'; see Fig. 2. It is gratifying that we
obtain a rather good straight line. Surprisingly,
the slope is roughly —", , as would follow from Eq.
(11). From the intercept we estimate X, '=4.3.

Ta
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FIG. 1. Empirical values of A, plotted as a function

of eF n(qF), where &F is measured relative to the bot-
tom of the conduction band, for the 5-d transition
metals.
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FIG. 2. The density of states of %' (solid line) and
Re (dashed line), and the integrated density of states
of W (dash-dotted) .
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FIG. 3-. The superconducting transition temperature
given by the present theory, as explained in the text,
plotted as a function of 5 (solid line}. The closed cir-
cles correspond to experimenta11y observed transition
temperatures for pure metals and the open circles are
those for alloys.

Using this value for ~, and the density of states
of W, ' together with the rigid-band idea, we have
calculated & and then, from Eq. (1), T, for 4.7
~ 8 ~6.8. The results are shown in the middle
portion of Fig. 3. As a consequence of cF moving
into the deep valley separating the bonding from
the antibonding peaks of the d band, around 3 ap-
propriate to W, we get a minimum in T, for an
approximately half-filled band, in a remarkably
good agreement with experiments. As & F moves
out of this valley towards either the bonding (low-
energy) or antibonding (high-energy) peaks —see
Fig. 2 T, rises until —(uF)0=(02)o[1- (-', )s„n(s~)Xo]
becomes negative at 5 =4.7 and at 8 =6.8. This
suggests that for values of n(s~) higher than the
ones corresponding to these singular points the
bcc lattice is no longer stable. Indeed, we find
that the transition metals with & = 4 and & = 7 form
hcp lattices. This view is strongly supported if
we look at the density of states of Re shown in
Fig. 2. While for bcc W, 5 = 6.7 corresponds to
an &F moving towards a peak in the density of
states making n(e „)very large, in hcp Re' for
the same 5, one is over the antibonding peak and,

for further filling of the d band, n(eq) is decreas-
ing. For 8 ~ 4.7 and 8 ~ 6.8 we have calculated
T, using the density of states for Re in the same
way as we have used that of W previously. The
results are shown in Fig. 3.

Beyond 5 =—8 the rise in T, again corresponds
to an approaching lattice instability. At 5 = 8.8,
(uP) —0. Significantly, Ir with & =9 crystallizes
in an fcc structure. Unfortunately, Eq. (12) does
not predict ~ for Ir correctly. Presumably, ~0
is not the same for the fcc transition metals as
for the others.

Thus Eq. (11) together with Eq. (1) gives a
good quantitative account of the variation of T,
with 8 for the hcp and bcc transition metals
across the second series with a single empirical
parameter &0. In addition, the theory predicts
correctly the changes in crystal structure as a
function of 3 for the metals in question. We find
that for certain values of 8 which correspond to
large density of states at the Fermi. energy, the
lattice changes its structure in order to reduce
the strength of the electron-phonon coupling. Al-
so, we note that T, is larger near such instabili-
ties. Matthias reached similar conclusions on
empirical grounds. '

For random alloys one is tempted to replace
n(e ~) in Eq. (11) by the configurationally averaged
density of states. If one accepts the rigid-band
model, " the full line in Fig. 3 can be taken as the
prediction for the appropriate alloy. The agree-
ment is again good. Particularly encouraging is
the rise of 7, in OsIr alloys. Clearly our theory
would predict a further rise if this alloy can be
made to form with 8 ~ 8.4 in hexagonal solid solu-
tion. The peak at 5 —=7.5 is due to a small but
definite hump in the density of states of Re. This
effect might also be observable.

We would like to thank Dr. P. B. Allen and Dr.
W. E. Pickett for a very helpful discussion.
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Photoemission Final-State Spectroscopy Applied to KClf
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Montana State University, Bozeman, Montana 59715

(Recei.ved 28 May 1974)

A new method of taking uv photoemission data, employing synchrotron radiation, is de-
scribed. The method has signficant advantages for investigatirg final-state properties
of interband transitions and for investigating many-body effects. Applying it to KCl,
strong peaks in the conductipn-band density of states are located at 9.7 and 12.6 eV. The
data also suggest a probable interpretation of an optical-reflectance peak (h v = 13 eV)
vrhose origin has been a matter of doubt.

This Letter reports a new mode of performing
ultraviolet photoemission spectroscopy (UPS)
with synchrotron radiation which conveniently
provides data bearing directly on the final-state
properties of interband transitions. Previously,
UPS studies have obtained final-state properties
by measuring sets of energy distribution curves
(EDC's) and then analyzing peak amplitudes or
peak positions as a function of photon energy hv."
In principle, all the information available from
an ordinary photoemission investigation of a sub-
stance is implicit in a family of EDC's measured
at closely spaced hv values. In practice, how-

ever, detailed amplitude differences in adjacent
EDC's are difficult or impossible to determine,
so that final-state UPS studies have been restrict-
ed in scope. As a result, the typical photoemis-
sion experiment ha, s emphasized the initial-sta, te
properties of optical excitations.

The above limitations are ultimately traceable
to constraints imposed by the nature of the radia-
tion source: i.e., a narrow or discontinuous spec-
trum. Synchrotron radiation, however, posses-
ses a broad smooth spectrum and it has been pos-
sible to exploit this quality in certain experimen-
tal adaptations, as described below, which render
the desired information much more accessible
and conspicuous.

The alkali ha, lide KCl is selected for discussion
because it has very strong final-state properties,
making the relation between the new mode and the
more familiar EDC mode easy to recognize. Fur-
ther, KCl provides a good example of the utility
of the new mode for studying certain many-body
effects. The data are examined for evidence of
the two-electron excitation mechanism proposed

by DeVreese et al. ,
' and no evidence is found to

support the proposal. The data do, however,
show a feature which may be due to an excitonic
resonance associated with the very strong d-like
sta, tes in the conduction ba,nds.

The emission data are obtained from KC1 films
deposited on Au in ultrahigh vacuum —about 270
0
A thick for the data shown. The experimental ar-
rangement is outlined by Baer and Lapeyre' a,nd

Lapeyre et al. 4 Synchrotron radiation from the

University of Wisconsin storage ring was used

as the excitation source, and the spectral depen-
dence of its intensity was obtained from sodium

salicylate fluorescence measurements.
To introduce the new mode of performing UPS

experiments, we first present a set of EDC's in
Fig. 1,' arranged to demonstrate that the number
of electrons photoemitted with final-state energy
Ez is a two-variable function N(Ef, hv) which can
be viewed in three dimensions as a surface:he
emission surface. The reference energy is the
valence-band maximum and the threshold (vac-
uum level) is 8.6+0.2 eV. In this picture the
EDC corresponds to 3, scan along a constant-~v
line and is denoted by N(Ez, hv fixed). Measure-
ment of a family of EDC's is the classic mode
for determining the properties of the emission
surface. The peak which occurs at the far right
of each curve is due to electrons emitted from
the valence bands (VB) without energy loss—the
VB primaries —and the width of the peak repre-
sents the width of the VB's (2.5+0.2 eV). The
balance of the electrons, emitted at lower ener-
gies, form the secondaries.

The new mode scans along a different section
of the emission surface corresponding to the


