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be described by (4) and (4') with v = 0.64+ 0.02
and $, =1.6+0.2 A for T&T, and with v'=0. 65
+0.02 and $, '=0.78+0.09 A for T «T,. The agree-
ment of v and v' and also the fact that the new re-
sults for v, v', g„and $, ' agree well with our
earlier work' are evidence for the reliability of
the matching process used to construct the curves
in Fig. 1.

The ratio $,j$,'=2.05+0.22 is in good agree-
ment with the values 1.96 and 1.91 calculated by
Tarko and Fisher" and Brezin, Le Quillou, and

Zinn-Justin, ' respectively.
We used (1) and (2) with the values of D(q'$', 8)

to find I(0) for each scattering curve. Since we
had determined I,Ad previously, ' we then could
compute (pjp, )'P, Kr, From our values of (pj
p,)'P, Kr, we found that I'=0.066+0.01, F'=0.0130
+0.002, y=1.22+0.03, and y'=1.23+0.03. These
results are in good agreement with those we pre-
sented in Ref. 5.
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It is found that the static dielectric constant and mean polarizability of a simple non-
polar fluid share the singularity of the internal energy at the critical point. This singu-
larity can also be expected in the index of refraction at nonzero frequencies along with a
more singular term that vanishes as the frequency goes to zero.

In studying the properties of fluids near the
critical point, it is extremely difficult to make
direct thermodynamic measurements of number
density p with high precision. To gain informa-
tion about p, many experimentalists therefore re-
sort to measurements of the index of refraction
n(&u) or dielectric constant e =n'(0), assuming a
nonsingular relation between changes in n(u) and

changes in p based upon the Lorentz-Lorenz
equation or some simple variant of it. (Here ~
is frequency. )

Such a stratagem has permitted changes in p
to be assessed with much higher precision over
most of the critica1. region' than could be achieved
through direct measurement, but it also has
raised the question of whether there is any singu-
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larity at the critical point in n itself. If there is,
and if it were not properly taken into account,
then the use of n to determine p could give rise
to errors in the apparent critical-point relations
between p and other quantities. The resulting un-
certainty has become an important concern of ex-
perimentalists probing increasingly subtle as-
pects of critical phenomena. '

In this note we give a theoretical analysis of the
static dielectric constant e for a simple polariza-
ble but nonpolar fluid. Our conclusions are based
primarily on models'4 in which the polarizability
of an isolated molecule can be used as a parame-
ter of smallness; to third order in polarizability
we find that the most singular contribution to e in
the critical region shares the critical behavior of
the internal energy per particle, u. In such mod-
els there is no way that the singularities of the
higher-order terms can cancel those of the low-
er-order terms for arbitrary fixed polarizability
since we expand in that quantity. Moreover, for
particles with sufficiently low polarizability the
singularity we investigate would be the only one
detectable in the critical region. We are further
able to include the effect upon polarizability of
pair overlap and exchange terms that are absent
in the low-order terms of the polarizability ex-
pansion developed by early workers" but includ-
ed in more recent treatments' of polarizable flu-
ids. We find that these terms do not alter the
singularity. We therefore conclude that e itself
can be expected to remain finite at the critical
Point but that Be/BT' can be exPected to become
infinite, where T is temperature. This is our
main result. In addition we find that the mean po-
larizability per particle also includes a term that
behaves like u in the critical region, and we note
that such a term can also be expected in n(&u) for
any cv.

Our work extends a,n earlier analysis of n(m) by
Hocken and Stell' that was restricted to the term
of second order in the polarizability expansion of
the Lorentz-Lorenz function. That term, which
was found to have a sharper singularity than that
of u for small k$ ($ is correlation length and k is
magnitude of the wave vector of incident radia-
tion) vanishes as k -0. Thus that analysis did
not extend to high enough order in polarizability
to probe the singular behavior of the static e.

We shall first set forth some details of our con-
clusions and then sketch their demonstration.
Throughout we let 6 rather than the usual n refer
to polarizability simply to avoid confusion with
the critical exponent o.; 6I, will denote the polar-

izability of an isolated molecule while ~&M will
denote the deviation of the Clausius-Mosotti func-
tion from 4v8, /3. Thus ~c~-—(e —I)/[(a+2)p]
—4w8, /3. It is convenient to think of ~cM as a
background term hI"cM ~ that is analytic in the
two variables p and T about the critical point (p„
T,) plus a term bEcM s that is singular at (p„T,).
Letting t = T —T, we find that for p = p„ t & o, one
should expect AFc& s to remain finite' but have
infinite derivatives with respect to t, to give,
when added to AEcM ~,

BEAM A yt +A2t + ~ ~ ~ ~

Here the A,. are constants and n is the specific-
heat exponent. (In many fluids o. seems to be
about —,'.) The behavior along the critical iso-
therm (i=0, pep, ) or coexistence curve (—t8-p
—p,) is not as readily analyzed, but under the
simplest tenable sealing assumptions we find a
very weak singularity. Along with an expectedI' contribution from ~&M ~ it gives

b,E -B M'+B~ ' "
CM (2a)

where M = ~p —p ~/p, . Correspondingly, along
the coexistence curve we find'

~'CM =A, 't +A 't' + (2b)

6Egp s =Bkm[t~ ~+~~"+. . .]+Af~ "+ (4)

where B is O(0, ') and A is O(0,'). If (4) held for
all k as ~-0, DWELL s would thus diverge at the
critical point, and for any 0@0, the t' term
would be negligible for sufficiently small t. How-
ever, the O(k') term in fact remains finite at the
critical point, as discussed in Ref. 6.

For clarity of presentation we shall begin our
analysis for a classical system of particles such

For n(&u), the situation cannot be so easily sum-
marized because of the difference in behavior be-
tween the small-(k/z) and the large-(k/z) cases,
where z is the inverse correlation length in the
problem. In the regime of k/z small, v-0,
Hocken and Stell found the dominant singularity
in the deviations from the Lorentz-Lorenz func-
tion DEAL —=(n' —1)[(n'+2)p] —4w0, /3 to be given by

L~ s=&&'t' ' "'"+ (3)

for t & 0, p = p„where ~ - t,', and g is the expo-
nent that measures the decay of the pair-correla-
tion function at the critical point. The arguments
of this note suggest in addition that the weaker
singularity that remains when ( -0 is present
for all ~. Summing these two contributions to
~LL s gives, for k/~ small, t&0, p=p„
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that each particle carries a fixed scalar polariza-
bility 00 and no permanent dipole or multipole
moments. When the pair potential between parti-
cles depends only upon the distance r between
particles, &EGM then has the form"

=(4m 8,'/3)(I, +J,) +O(O, '), (5a)

—2@a I, =4u —(p/p) +kT. (6)

In the critical region, we decompose u into an
analytic background part u~ and a singular part
u~ and write for p = p„ t %, u ~ = const/ '
Along the coexistence curve we write u& =const
x (- t~', while along the critical isotherm we
write u~ =const'~', where we assume that
(—t) -M describes the coexistence curve in the
critical region. ' Simple scaling considerations
then lead one to expect n. = n'= n'. The critical
behavior of p/p is much less singular than that of
u (for example, one expects p~-t' for p=p„
t &0, where p~ is the singular part of p) and hence
can be neglected in (6).

where I2 and J, are the volume integra. ls [d(i) is
our notation for d"r,.]

I, = pfd(2)g, (12)e ~ T(12) T(21) e, (5b)

Z, =p'fd(2)d(3)g, (123)e T(12) ~ T(23) ~ e. (5c)

Here T(12) is the dipole tensor 3(r»r»)r» '
—Ir», e is a unit vector, g,(12) is the radial
distribution function, and g, (123) is the triplet
distribution function. The g,(12) can be written
more simply as g(r) and the I, as the scalar inte-
gral 8zpf dr)r ~dr. For molecules with hard

0
cores of diameter R, g,(ij) = 0 and g, (ijk) = 0 for
r;, &R, so that T(ij) can be replaced by T~(ij) in
(5), where T„=T for r, , &R and T„=O for r, , &R.
Our analysis is at its simplest for hard-core par-
ticles. In particular, for the pair potential y(r)
=~ for r&R, y(r) = —e(R/r)' for r&R, —~@A I2
is exactly the configurational internal energy per
particle, u. For other reasonable potentials it is
likewise to be expected that I, will share its dom-
inant singularity with u, since for fixed -small r,
g(r) itself can be expected" to vary as u with p
and T in the critical region. Hence any integral
with an integrand of g(r) times a function that
falls off rapidly with increasing r can be expected
to have this same singularity unless some special
cancelation occurs to repress it. We can verify
this explicitly for the Lennard-Jones potential
4e[(o/r)" —(v/r)'], for which I, can be exactly ex-
pressed in terms of the u, pressure p, and k T,
where k is Boltzmann's constant:

In the hard-core case we can rewrite 4, in the
form

J =I ~')[h]+I,&'~[h, ] —I„
where IB~' [h] is the integral

I,&'&[h]= pfd(2)d(3)e ~ T~(13)

Vz(32) ~ e[h(12) + 5(12)/p]

(7)

involving the two-particle cluster function h(r)
=g(r) —1, and I,~' is a similar integral that in-
volves h„ the three-particle cluster function.
We treat I, ' by observing that in a lattice gas"
or any system with lattice-gas (hole-particle)
symmetry about p„ I, '~ is identically zero when

p = p, for all T - T, . The dominant critical singu-
larities of real fluids appear to have this lattice-
gas symmetry about p„with deviations from it
appearing only in higher-order terms. Thus we
shall neglect any such deviations in considering
the leading singularity of e, assuming that I, '
=0 when p=p, for all T& T, . The I, we have al-
ready analyzed. Similar analysis of I, ' shows
that it can be rewritten as a volume integral over
h(12) + 5(12)/p times a short-ranged function of r.
Thus it too behaves like I„sharing the singulari-
ties of u. As with I„one clearly must also ex-
pect these singularities for potentials that do not
have perfectly hard cores.

The above considerations immediately yield
Eq. (I). When pep„ I,~') is no longer zero even
for a system with lattice-gas symmetry. How-
ever we can invoke the usual scaling assumption
that if a singular function (in this case ~c& ~)
goes as t" for M=0, t —0, it will go as M"' along
both the coexistence curve and critical isotherm.
This assumption yields Eq. (2).' (Simply neglect-
ing I,('~ altogether yields the same result. )

The major difference between the model con-
sidered above and a system of real monatomic
molecules lies in the fact that the polarizability
carried by a real molecule is only a fixed scalar
00 when the molecule is far from neighboring
molecules. More generally it is a tensor 0 that
depends upon the coordinates of neighboring mol-
ecules and hence changes from moment to mo-
ment. A generalization of the model that involves
such a nonconstant polarizability has been stud-
ied, 4 and for it ~cM is still given by (5a) with I,
replaced by A.0I~, where A., is a constant of order
unity characteristic of the molecule. In this mod-
el~ the thermal average (0) has the form"

(6) = 6~I+ 00 (AO —1)I2I+0(004), (8)

1270
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with I a second-rank unit tensor. Thus the corn-
ponents of (0) —O,I, with ~cM, behave like u in
the critical region. The most recent and accurate
assessments' of 8 for real molecules do not lend
themselves to expansion in O„but nevertheless
suggest that (5) and (8) taken through O(&o') rep-
resent adequate approximations if A.,I, is re-
placed by the integral I = pfg(r) n(r)d'r/20, ',
where n(r) is the variation in the trace of the
pair polarizability tensor. ' ". Although the re-
sulting o.(r) is not proportional to r ' for small
r, it is for large ~, so that I„, like I„can still
be expected to share the internal-energy singu-
larity. Thus ~FzM and, (0) can also.

Corresponding treatments of (0(u)) based upon
the work of Mazur and Mandel" include this same
singularity for all nonzero frequencies co as well
as for &=0. From the way ~LL depends upon
(0(e)), as given in that reference, one further
concludes that hELL for u g0 would pick up the
internal-energy singularity from (&(&u)) even if it
were free of this singularity in the constant-po-
larizability case for m&0. (More likely bELL,
like AFcM, already shares the u singularity even
in this case, but the analysis of Ref. 6 would have
to be extended to order 8,' to settle this issue. )
These remarks, together with Eg. (3), give (4)
and complete our analysis. A more detailed ac-
count is in preparation. '
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