VOLUME 33, NUMBER 21 PHYSICAL REVIEW LETTERS 18 NOVEMBER 1974

176, 1456 (1968). In our work we are more explicit cence (16).
about the shape and time behavior of the average radi- 'SN. Skribanowitz et al., Phys. Rev. Lett. 30, 309
ated intensity, and on the condition for superfluores- (1973).

e-Expansion Solution of Wilson’s Incomplete-Integration Renormalization-Group Equations

Prabodh Shukla and Melville S. Green
Hebrew University, Jevusalem, Isvael, and Temple University, Philadelphia, Pennsylvania 19122
(Received 23 May 1974)

Wilson’s incomplete-integration renormalization-group equations have been solved in
4 — ¢ dimensions for an arbitrary cutoff function. The two relevent exponents are comput-

ed to order ¢ and the exponent n is computed to order €’. To order e the exponents agree

with the sharp-cutoff renormalization group. In order €?, however, n appears to depend
on the choice of the cutoff function.

One of the most beautiful but puzzling features of the renormalization-group approach is the fact that
apparently ad libitum changes in the parameters of the physical system and the renormalization group
itself do not affect the results of the theory. This of course is the theoretical basis of the physical
fact of the universality of critical phenomena in a wide variety of systems and substances. Invariance
of exponents and other quantities with respect to changes in parameters of the system have found their
explanation in the concepts of relevant and irrelevant observables introduced by Kadanoff.! The effect
of changes in the renormalization group itself are less well understood. Wegner? and Jona-Lasinio®
have given a very general definition of a renormalization group and have given conditions under which
two renormalization groups give the same exponents. DiCastro? has shown in the context of the € ex-
panSions that the renormalization group (RNG) of Gell-Mann and Low and the renormalization group of
Wilson (sharp cutoff) yield the same exponents. It is the purpose of this Letter to carry out the € ex-
pansion for yet another renormalization group, Wilson’s incomplete-integration RNG.®

We start with Wilson’s incomplete-integration RNG equation,

oH _ <_zg ) > f (GH oH 8%H _6{1_)
3t p0ntk V40 (6 + (k)] 50,00, Ock()c_kJro"éok !

where b is a constant and B(k) is any positive increasing analytic function of k2 with 3(0) =0, The effec-
tive cutoff on the wave vector is e " and B(k) determines the shape of this cutoff. 0, is'the Fourier
component of the spin field corresponding to wave vector 2. We attempt to determine the fixed-point
Hamiltonian A* such that

8H /0ty .y+=0,
and we make the expansion
H*=- ‘fU (k)00 %fk f U*(k ok, Ry, k3)0k0k10k20k3 —.e.
s to

We fix B(k) and vary b so a determine U,,* which are analytic. We make the following Ansaiz for

b and U, *:

= 2 * — * * 2 . * — * * 2 . * = * 2
b=1+be+be+.. UX=Uy*+ Uy ¥e +Uyp*e® +,. .5 UX=Uy*e+Up*e®+...; Ug*=Ug*e’+. ...

-3
We skip the explicit writing of the arguments of the U,,* when it is not difficult to see what they should

be. We have chosen b,=1 in order that U, *(k) be analytic with an expansion that begins with 2.
The above expansion enables us to truncate the RNG equations. To order €, we have

k-VkU20*= 2[1+8(R))(1 - Uzo*) Uy ke VU, *=2[1+P(R)]U, * +2b,(1 = Uyy*) U20*+f [1+8(R)]U,.*;
Be VU, *=2[1+P(R)|Uyy* = 2[1 +B(R) Uy )2+ 2b,(1 = 2Upo ) Uyy * + 2b,(1 = Uyy®) Upy*
+ f’ﬁ[ 1+ B(k1)]U42* +b1.f,;1[1 +B(k1)]U41* + IG[I +B<k1)]U41*;
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2ok VU * =23 P(R) Uy * 20+ ¥y U *=25,P(R) Up* + Uy * +75,{0,(1 = 2U,0%) = [1+B8(k) |U,, ¥} U, *

+ L4[1 +B(k ) U, *;

2k Vi Use™ == 2Ug, * +25:P(R) Ugy* = 27 pl 1+ Bl +Ry +k,) |U, ¥R, Ry oy — R — Ry — )

where P(k) = B(k)[1 - 2U, (k)] - 2Uy*(k). The in-
tegrals are four-dimensional. “denotes the
term of order € in the expansion of fk around di-
mensionality four.

We first determine U, * and U, * since these
equations do not involve any unknown functions.
Wilson has solved the nonlinear equation for U, *:

Uyo*(k) = ak?/{ak? + exp| - 2 [ '8(k)dk]},

where a is an arbitrary constant which Wilson
chooses to be 1. The equation for U,,* is a sepa-
rable linear homogeneous equation whose solu-
tion is

U41* =AH if(ki)y

where A is a constant and f(k) = exp fo y “1p(k) dk.
With U,,* and U,,* known, we can now solve the
equation for U, * at which point we will have com-
pletely determined the fixed point to order €.
The equation for U,,* is a linear ordinary differ-
ential equation in which the coefficient of the first
derivative vanishes when =0, This equation will
have a solution analytic in & at £ =0 only if b,=0.
Thus b =1 to order €. The general analytic solu-
tion for U,,* is

Uy *(&) = (=~ 3AB +C k*)f (),

where B = [y(k), y(k)=[1+8(k)]f%(), and C, is an
arbitrary constant. The equations for Ug,* and
U,,* are linear inhomogeneous partial differential
equations which may be solved by the method of
characteristics. Ug,* is determined uniquely by
the requirement of analyticity at the origin,

Usg* == ZAZHtf(kI)EPg(k +kl +k2)’
where
&R =[x dx y(nk)

and 2, denotes a sum over ten terms which come
from inequivalent choices of three out of the six
vectors &, k,, k,, k; k,, and k,. In order that
U,,* be analytic at the origin it is necessary that

A=[12 (k) g(r)] .
Finally b, is determined by the condition that
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‘ U,,*(k) is analytic at £=0. This yields

- zb2=—%3 sz (k). '4; (k) ]0' 17\ dxl—},dlﬁg),

where

F=\e,+k,l.

To determine the exponents we consider the be-
havior of small perturbations in the neighborhood
of the fixed point. We set

H=H*+0,(0) exp(~-d,t)

in the RNG equation and retain only terms linear
in the perturbation O,(0). We write

0,(0) = fklvl(kl)ckﬁéfklkaVz(kl, AL AN

and seek values of d,, for which the V’s are ana-
lytic. The linearized RNG equations for the func-
tions V fall into two disjoint classes, one contain-
ing odd V’s and one containing even V’s. The ex-
ponent 7 is determined from the eigenvector of
the odd equations which approaches the eigenvec-
tor of the Gaussian fixed point

Vl(k) =f(k) ’

as € ~0. For this eigenvector d, equals 3(d - 2
+1). Introducing the € expansion

Vy=Vy=...=0

d,=1-3€+3n, n=n,+me+ne2+...,
V=V +Vpe+V,et+. .,

- 2 . = 2
Vo=Vae+Vgef+. . Vo=V, ,e2+..

we obtain six equations for V,, to V,,, which are
very similar to the six equations for U,,* to Ug,*.
They may be solved by the same methods as for
the equations for the U,,’s. At each order n,, 7,
and 7, are chosen so as to make the solutions ana-
lytic. To order € the results are identical to
those obtained for the sharp-cutoff RNGS; i.e. 7,
=0, n,=0. 7, 1is found to be — 2b,. It is relatively
easy to determine the second relevant anomalous
dimension to order €. This is the eigenvalue cor-
responding to the eigenvector which approaches
the Gaussian eigenvector

Vo=flk)f(k,), V,=V,=...,=0as e~0.
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We find, in agreement with the sharp-cutoff RNG,
to order €, d, =2~ £¢. Thus to order € the two
relevant thermodynamic exponents are identical
to the sharp-cutoff RNG. To order €2, however,
the value of 7 explicitly contains B(k) and a which
characterizes U, *(k). An important question is
whether the dependence on B(k) and a is only ap-
parent and that through hidden identities this de-
pendence disappears. In this connection we note
that the expression is invariant under the simul-
taneous transformation a ~X%a, B(k) —B(\k). How-
ever, we have not yet resolved the question of
whether the dependence on B(k) and a is apparent
or real.
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A new method has been developed for analyzing small-angle x-ray scattering data from
fluids in the critical region without assuming the form of the angular distribution of the
scattered intensity. By use of data obtained previously, the scaling function for the scat-
tered intensity has been evaluated for argon. This function expresses the angular dis-
tribution of the scattering in terms of g¢, where £ is the long-range correlation length,

q =47\ 1sin@/2), A is the x-ray wavelength, and a is the scattering angle.

When a fluid is near its critical point, correla-
tions between density fluctuations extend over
distances many times larger than atomic dimen-
sions. These correlations can be characterized
by the long-range correlation length £, which be-
comes large near the critical point. The long-
range density fluctuations scatter x rays at small
angles, and so, when a fluid approaches its criti-
cal point, there is a large increase in the x-ray
scattering at angles no greater than a few de-
grees.

X-ray scattering can be used to study many of
the equilibrium properties of fluids in the critical
region.!”® The long-range correlation length £
can be calculated from the angular dependence of
the scattering, and the zero-angle scattered in-
tensity I(0) is proportional to the quantity p?K,,
where p is the number of molecules per unit vol-
ume and K, is the isothermal compressibility. In

addition, ° measurements of the x-ray absorption
permit an independent determination of p.

Since the long-range correlation length deter-

mines the angular dependence of the scattered in-
tensity in the critical region, measurements of
the scattering from a fluid near its critical point
can be used to study the behavior of §£. However,
most of the methods for quantitative interpreta-
tion of the scattering data require some knowl-
edge of the relationship between £ and the scat-
tered intensity, and so approximate theoretical
expressions for the scattering are normally used
to help interpret the scattering data.

Since the values of £ and I(0) computed from the
scattering curves can often be affected by the

form of the theoretical approximation selected
for analysis of the data, a method for interpret-

ing the scattering without using an approximate
equation would be preferable. We have recently
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