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has shown no improvement. It is possible that
the rate of energy release to the thermometer
is limited by the thermal conductivity of the sam-
ple. Alternatively the factor n may be much
less than 0.01, possibly because of clustering of
free radicals.

Despite the small size of the observed response,
the dependence on temperature cycling confirms
the model involving resonant spin-symmetry con-
version of the tunneling methyl groups which was
used to account for the nuclear resonance exper-
iments. ' At least in these preliminary experi-
ments, though, this thermal method of detecting
tunneling resonances is much less sensitive than
magnetic resonance methods. It is interesting to
note that the thermal method can itself be re-

garded as a kind of electron spin resonance ex-
periment in which the resonant absorption of
microwave radiation by the electrons is detected
thermally, and the microwave radiation is pro-
vided by the rotating methyl groups instead of by
the conventional klystron.

This work is supported by the Science Research
Council.

'H. Qlattli, A. Sentz, and M. Eisenkremer, Phys.
Bev. Lett. 28, 871 (1972).

S. Clough and B. J. Mulady, Phys. Rev. Lett. 30,
161 (1973).

S. Clough, W. S. Hinshaw, and T. Hobson, Phys.
Bev. Lett. 31, 1375 (1973).

Superfluorescence and Cooperative Frequency Shift

G. Banfi
Istitlto di I'isica ApP/icata, Universita di I'ave, Pavia, Italy

and

R. Bonifacio*'t
Laboratory o del Consig/io ¹ziona/e delle Richexche di &isica del I'/asma ed E/ettxoriica Quantistica,

Istitlto di I"isica, Univey sita di Agi/ano Mi/ano Ita/y
(Received 24 July 1974)

We report on a first-principles demonstration of the superfluorescence effect in a large
system. Under proper conditions, a system of two-level atoms, confined to a pencil-
shaped volume, and initially prepared in an uncorrelated excited state, goes through a
nonexponential cooperative decay, giving rise to a superQuorescence burst. Radiation is
all confined in two diffraction patterns and the central frequency presents a time-depen-
dent shift (chirping) .

Superradiance (radiation proportional to N' by K two-level atoms, coherently prepared in a correlat-
ed state with a macroscopic polarization) was first described by Dicke assuming a system small com-
pared to a wavelength. Rehler and Eberly' generalized the results to a large system. However the ra-
diation process from such initial states is essentially classical, whereas cooperative spontaneous
emission from an initially uncorrelated excitation (superfluorescence) is intrinsically a quantum pro-
cess. In fact the system starts radiating by ordinary fluorescence and then, eventually, it evolves
spontaneously toward a correlated state, in which it radiates proportionally to N', always preserving
large intensity fluctuations.

In previous papers' cooperative spontaneous emission has been treated by assuming strong coupling
with only one electromagnetic mode: the "Dicke end-fire mode. " Emission of radiation into other
modes, and escape of radiation from the active volume V„where atoms are enclosed, were taken into
account phenomenologically, by the insertion of relaxation terms in the equations of motion for the den-
sity operator.

In this Letter we report on a derivation from first principles of a many-mode theory of cooperative
decay and the superfluorescence effect. In particular, we are able to describe both cooperative and
noncooperative frequency shift and damping, as well as the radiation pattern. Our physical model con-
sists of a system of N two-level atoms, interacting only through an electromagnetic field. Atoms are
fixed at the vertices of a regular cubic lattice with spacing d. The parallelepiped occupied by the atoms
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has dimensions L„L„I-,and volume V, =Ad'=I. L, L . We quantize the free field in a volume V, V
» V„ in the Coulomb gauge. In the dipole approximation, neglecting electrostatic dipole interaction,
the Hamiltonian becomes

Ii =Sgmyaytay+hQQ r, ;+SV '~'Q[gyayr, ' exp(ik x;)+H.c.]
+nV "' P [gqaq'r, 'exp(ik x, )+H. c.], (I)

where ay, ag are field operators; x, ;, r, ~; are spin-flip atomic operators; x; is the space posi-
tion of atom i; gy=Q(2k~a) "'[p»' —(k p, »)']" is the coupling constant, with p» the electric dipole
matrix. We stress the fact that we keep in (I) antiresonating terms which are neglected in the rotating-
wave approximation.

If one solves the problem in terms of single-atom operators one has complicated equations which do
not show the "phasing" of atoms due to field emission, and they have been solved only when M=1, 2, 3,
or when the maximum linear dimension of the system, L„„„,is such that I- „«A.=2mc~ ' +' For our
purpose it is convenient to use collective dipole operators' defined as follows:

E E
R-„'= Qr, 'exp(in X;), R3= g r, ;; n, =2mL, 'n, , . —wd '(n, ( md ', j=x, y, z. (2)

R~' and As have angular momentum commutation relations for each n. With the use of the collective
operators, the Hamiltonian (l) becomes

H = Rgcoyagta y+kAR, + ltV "'Q f[ggayR-'f (k —n) + H. c.]+[~aytR-'f (k+ n)+ H. c.]j.

Here f is a "diffraction function" defined by

f (k —n) =N P, exp[i(k —n) ~ x;]. (4)

The motion of the total system is governed by the I iouville equation for the density operator W: W
=iZS'. We denote by W„ the reduced density operator for atomic variables. Making use of projector
techniques we can eliminate the field variables, obtaining the following equation for the density oper-
ator W~ of the atomic system alone:

W„(t) = —iA[R„W„(t)]+P J,
' dr(e;- (~)[R-,W„(t —r)R ']+H. e. j

+ Q f'dr(e-.-, '(T)[R-„',W, (t -r)R-„, ]+H.c. ). (5)
I

Here we have performed a Born approximation and we have neglected the commutators containing R'R
and R R since they contain an intrinsic time dependence exp(+i20t). We explicitly note that neglect-
ing these terms does not mean that we perform a rotating-wave approximation„since the antiresonant
terms in (1) give rise also to the 8' terms in (5), whose effect is fully retained in the following. The
limit of validity of the Born approximation' is

I., „«le = (cV/4miVX'y, )"',
where E~ is the cooperation length of the atomic system, ' and y, ' is the normal fluorescence decay
time.

The coefficients 8-„-„'(T)are defined by

a „--'(7) = (2w) ' jd'k ~'f (k —n)f (k —n') exp(+ i7ly'7), '

where re' = &+ my. The quantization volume 1 has been set equal to infinity with the replacement Qy
—(2w) VJ d k, thereby introducing irreversibility. I.et us now consider the coefficients Ct- -.(r).

In general 8-„-„(r)is different from zero in a time interval b, r such that

+~max ~ Lmax ~

i.e. , the maximum time lag to be considered in (5) is of the order of the transit time of. radiation in V, .
A

This statement is rather intuitive considering that integration (6) in a direction k is a Fourier trans-
form from k space to time space. Since the kernel f(k —n)f(k —n') has a width Lk, —(2m) L, , g-„-.(v)

1260



QQLUME 33, NUMBER 21 PHYSICAL RKVIKW LKTTKRS 18 NovEMBER 1974

will be different from zero for cT~ (2m) 'bK;„-I. ,„. Furthermore it can be shown»''0 that the effect
of 8 ~-, nn, on the atomic equation of motion if negligible.

If we now assume that the atomic system evolves on a time scale 7, such that

T~ &&C max» I max C~

we can simplify Eq. (6) to a Markovian master equation:

W„(t) = —iQ[R„W„(t)]+—,'Q-„&r- [R-,W„(t)R-']+H. c. )+ —,'Q-(r-. '[R-', W„(t)R- ]+H c.
where

(8)

r-„' = 2 f 8-„-„'(w)dr = (2m)
' fgy'5 (c l kl + Q)f'(k —n) d'k + i(2m) 'P f~'(2/+ 7IL,")f'(k —a) d'k. (10)

We call y
' and 0-' the real and imaginary part of I-'. Since y~+ =0, the master equation can be

written

W„=-i(Q+Q )[R„W„]+i-.'g-„Q-.[S-., W ]+ —'g-y &[R-. , W R„']+H.c.j,
where we have defined the cooperative polariza-
tion as

S~= Q x r, exp[ia (x; —x, )]
(12)

=R 'R-„—(2K+Ra),

and

Q =Q '+Q; Q' = 2+„(Q„+—Q„).
Equation (11) generalizes all previous results on
cooperative spontaneous emission, as will be de-
scribed in detail in a forthcoming paper. " Here
we state only the main results. The time evolu-
tion of S'„contains three different contributions:

(1) The first term gives a constant frequency
shift ' to the atomic transition, and can be elim-
inated by a renormalization of the naked frequen-
cy. Since Q-f'(k —a) =1, one can easily see
from (10) that Q' is nothing else than the Bethe
part of the Lamb shift of a two-level atom.

(2) The second unitary term describes a coop-
erative effect, since it vanishes for a single
atom. " It gives rise to a time-dependent coop-
erative frequency shift ("chirping") which is pro-
portional to the total number of atoms. More
precisely, calculating from the master equation
(9) the equation of motion for (R-'(t)), one obtains
the so-called "super-Bloch-vector" equations de-
rived semiclassically for a single atom by Jaynes"
or for N atoms in a small volume by Stroud et
al." These equations lead immediately to a time-
dependent frequency for (R-') given by

(u-'(t) =+ [Q+ Q'+ Q-„(R,(t))].

We stress the fact that, in a large volume, 0-
is strongly dependent on the geometry of V, and
on the wave vector n. We have thus demonstrat-
ed that a cooperative chirping takes place also
for volumey larger than a wavelength, provided

that the superfluorescence conditions stated later
are met. This frequency shift is the macroscopic
consequence of an effective dipole-dipole interac-
tion potential induced by the radiation field spon-
taneously radiated by the atomic system during
the cooperative decay.

(3) The third term gives a nonunitary time evo-
lution. It contains both the Wigner-Weisskopf ex-
ponential decay as well as the cooperative super-
radiant decay. In fact from the master equation
(11) we obtain exactly

&R,) = -g-y-&S-& —y, (-'&+ &R &), (14)

where y, =P-y- turns out to be the Wigner-
Weisskopf decay constant.

The radiation rate per unit solid angle'~ in the
direction 0 can be shown to be

where y(k) is the normal fluorescence radiation
rate:

y (k) = ~ ' fm'&(c I kl - Q) d'k.

It can be verified that our equations and defini-
tions are consistent with the energy conservation
law: Iz, --f i(k)dQ»= —(Rs). The statements we
have made so far are generally valid for any ini-
tial state.

We now specialize to the II ituation in which the
system starts from an initially uncorrelated
state with a population difference:

(R, (o)) =-.'X- —,'N; (s-.(o)) =o.

Let us define the threshold length lr= (4m) 'A, '
x (V,/I&I)(yr/y, ), where yr is the total decay rate
(including inhomogeneous broadening). It can be
shown that if I-,„&l~, then all 8- are zero at all
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times, and the system radiates by normal fluo-
rescence; if L, ,„»l ~, and the Fresnel number
E= (Xl,„) 'L ' is such that E- I (pencil-shaped
volume), only two S- survive, specifically, S,-
= 2[(—,'Ã)s —(As)s], with !aol = c '0 and no directed
along I- „. In the latter case the system starts
radiating by normal fluorescence, but then the
radiation rate increases becoming proportional
to 1V, and the radiation is all condensed into two
opposite diffraction patterns centered around the
I-,„direction, the so-called "end-fire modes. ""
This can be seen by substituting the above ex-
pression for S, a in (14) and (15) and solving for

0
(R,(t)). In this case the results for the one-mode
model, concerning the conditions for superfluo-
rescence and the time behavior of the radiated
intensity and of B„ turn out to be correct.

From conditions (8) and L,„»lr, we confirm
that the superfluorescence effect takes place in
a pencil-shaped volume only if

E~«L „«/c, (16)

where the left-hand side ensures that the dephas-
ing atomic process occurs on a time scale much

larger than the characteristic times of coopera-
tive emission, while the right-hand side guaran-
tees that the decay takes place always in a vac-
uum of photons, so that stimulated processes do

not play any role.
Our results do not agree with the statement that

that L,„»/& is the only requirement for super-
fluorescence, made by Skribanowitz et a/. "in
the interpretation of their experimental work,
where more pulses were obtained. Since in their
experimental conditions E-1, but l~«I. ,„-Ec,
the right-hand side of (16) is violated. Hence we

cannot interpret their results with this theory,
because the Born and Markov approximations
are no longer valid. On the other hand, we make
the following suggestion: If the experimental situ-
ation is changed to satisfy condition (16), single-
pulse superfluorescence will occur, as described
in this paper and in Ref. 3.

In a forthcoming paper' the condition L,„«/c
will be relaxed, obtaining ringing (i.e. , oscilla-
tion in radiated intensity) as is observed in the
experiment of Ref. 16. Ringing in non-Markovian
superfluorescence is due to the fundamental role
of stimulated emission and absorption processes
when L,„-/&. Furthermore in Ref. 9 it will be
shown that for L,„»E~ the superfluorescence ef-
fect disappears.
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Wilson's incomplete-integration renormalization-group equations have been solved in
4- e dimensions for an arbitrary cutoff function. The two relevent exponents are comput-
ed to order e and the exponent g is computed to order &~. To order g the exponents agree
with the sharp-cutoff renormalization group. In order &2, however, g appears to depend
on the choice of the cutoff function.

One of the most beautiful but puzzling features of the renormalization-group approach is the fact that
apparently ad libitum changes in the parameters of the physical system and the renormalization group
itself do not affect the results of the theory. This of course is the theoretical basis of the physical
fact of the universality of critical phenomena in a wide variety of systems and substances. Invariance
of exponents and other quantities with respect to changes in parameters of the system have found their
explanation in the concepts of relevant and irrelevant observables introduced by Kadanoff. ' The effect
of changes in the renormalization group itself are less well understood. Wegner' and Jona-Lasinio'
have given a very general definition of a renormalization group and have given conditions under which
two renormalization groups give the same exponents. DiCastro4 has shown in the context of the e ex-
pansions that the renormalization group (RNG) of Gell-Mann and Low and the renormalization group of
Wilson (sharp cutoff) yield the same exponents. It is the purpose of this Letter to carry out the e ex-
pansion for yet another renormalization group, Wilson's incomplete-integration RNG. '

We start with Wilson's incomplete-integration RNG equation,

BH d 6B—Gg+k %god —+ [5+p(k)] + —+ CFp

6H 6H D B 6H
A, 5cr~5cr „5@~6@~ "60~

where b is a constant and P(k) is any positive increasing analytic function of k with P(0) =0. The effec-
tive cutoff on the wave vector is e and P(k) determines the shape of this cutoff. o, is the Fourier
component of the spin field corresponding to wave vector k. We attempt to determine the fixed-point
Hamiltonian B* such that

sa/st(„„:=0,

and we make the expansion

We fix P(k) and vary b so as to determine U,„which are analytic. We make the following Ansatz for
b and U,„*:

b T +by +526 +. ~ ~ U2 U20 + ~~21 6 + U22 E +. ~ ~
&

U4*= U4y*C + U42 C + ~ '& U6 U62 +'

We skip the explicit writing of the arguments of the U,„when it is not difficult to see what they should
be. We have chosen bo = 1 in order that U» (k) be analytic with an expansion that begins with k .

The above expansion enables us to truncate the RNG equations. To order c', we have

k V,U»*= 2[1+P(k)](1—U„*)U„*; k. V'„U„*=2[1+P(k)]U„*+2k,(1 —U„*)U„*+f„[l+P(k,)]U„*;
k' V„U2,*=2[1+P(k) ]U2, *—2[1+p(k)](U2, *)2+2b, (1 —2U2O*) U2, *+2b2(l —U20*) U20*

+ f [1+/(k,)]U„*+5,f [1+P(k,)]U„*+f [1+P(k,)]U„*;
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