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The hypothesis that the Higgs field has also a cosmological character is proposed. The
experimental consequences are an upper limit on the mass of the scalar boson, m ,< 4.6
X107 27me , and an implication that the universe will recontract.

Several recent developments® 2 in particle
physics portend the exciting possibility of attain-
ing the long-sought relations among the various
types of particle interactions. While weak, elec-
tromagnetic, and strong interactions can be
amalgamated by a variety of stratagems, the
gravitational interaction still stands alone. It
is the purpose of this Letter to propose the re-
mote possibility that a relationship exists be-
tween spontaneously broken gauge theories and
the cosmological constant. To date, the Higgs
particle(s), deus ex machina, have eluded ex-
perimental detection. This could be a result of
the predicted very small coupling constant even
though the mass is assumed arbitrary.? The fol-
lowing proposition ascribes a cosmological sig-
nificance to these particles.

All gauge theories with spontaneously broken
symmetry start with a manifestly symmetric
Lagrangian. It seems reasonable to suppose that
the original symmetric Lagrangian has a physi-
cal meaning. I implement this concept of reality
by requiring that the energy-momentum tensor
T,, formed from the Lagrangian have zero ex-
pectation value for the symmetric vacuum. The
physically realized vacuum or asymmetric vac-

uum then has a nonzero expectation value for Tu,,.

The origin of the nonvanishing of T, is the
nonvanishing of the Higgs-field vacuum expecta-
tion value, an important ingredient in Weinberg-
Salam-type renormalizable theories.

Einstein’s gravitational field equations connect
the energy-momentum tensor T, to space-time
structure via the Ricci tensor:

Rpu-%gpvR=(8ﬂG/c4)Tuu- (1)

Here G is the gravitation coupling constant and
the signature of g,, is (+, =, =, =). The assump-
tion that the vacuum expectation value of 7, is
nonvanishing and physically meaningful leads to
the equation

Ruu_égpuR =Agpuy (2)

with
Ag“,,= (81TG/C4)(T’“;>~ (3)

The vacuum value of T, thus appears in the form
of a cosmological term in the vacuum field equa-
tions. Zel’dovitch and Novikov* have already con-
jectured such a meaning for the cosmological
constant.

For the specific case of the Weinberg-Salam
SU(2)® U(1) gauge symmetry, specific conse-
quences follow from the above proposal. The
conclusions are to a great extent model indepen-
dent. If V(¢) is the “potential” term in the Higgs-
field Lagrangian, then the only nonvanishing
part of ( Tu,) (constructed by the canonical pro-
cedures of field theory) is

(T =8ulV(e),
Vip)=u2p o +Me P (u?<0). (4)

Let v/V2 be the (real) vacuum expectation value
of ¢, so that

V(p)=p*v?/4. ()

These parameters are related to physical param-
eters:

m¢2=_2“2,
v3=4M,%/g?=1/N2Gy. (6)

Here m , and m,, are the masses of the Higgs
scalar and the weak vector boson, respectively.
The coupling constant g is related to the electro-
magnetic coupling constant ¢ and the y-Z mixing
angle © by

e=gsin®. (7)

The measured constant Gy is the Fermi weak-
coupling constant. Putting together the above in-
gredients yields

A=—(TTG/\/—2—GF)W”/¢2 (8)

(Z=c=1). Now an upper limit® exists experimen-
tally for the value of A and consequently implies
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an upper limit onm ,:
m,<4.6x10"%m,. 9)

So far as elementary-particle physics is con-
cerned, the Higgs particle is massless, a proper-
ty not inconsistent with experiment.® (It is inter-
esting to note that if m , arises gravitationally,
then A ~G ~ u? and the necessary factor of small-
ness arises here but in a more intricate fashion
than previously surmised.?)

There are a number of consequences which en-
sue. If it be granted that the electron mass origi-
nates from spontaneous symmetry breakdown via
the Higgs mechanism, then ¢ is weakly coupled
to the electron with coupling constant

G,~2x10"°. (10)

This small coupling inhibits easy production
and makes it plausible that the particle has es-
caped detection. If the Higgs particle is effective-
ly massless, however, it must also couple to the
proton with a sign opposite to the electron cou-
pling, otherwise matter would collapse under
this weak but coherent long-ranged “scalar”
electrodynamic force. One place to look for the
particle is in the 0* — 0* transition in '°0.

If the assumption is made that the universe at
the present epoch is isotropic, a second conse-
quence of the model, somewhat more speculative,
ensues. The appearance of a term with the cos-
mological constant in the equations governing the
evolution of the universe implies that the universe
will eventually contract.® This follows from the
property that the cosmological constant is nega-
tive [ Eq. (8)] independent of the ¢ mass as long
as it is nonzero. A nonzero value of m , is re-

quired for the Higgs mechanism to work in the
usually assumed manner. It seems striking that
the absence of both nonrenormalizable ultraviolet
divergences in weak interactions and a divergent
expansion of the universe might have something
in common. If T nonconservation originates from
spontaneous breakdown of symmetry as, for ex-
ample, in the Lee model,” then the Higgs field
could conceivably also put the nonconservation in
a cosmological context.

The discovery of a nearly massless scalar field
with a weak coupling is a necessary condition for
the validity of the hypothesis that the Higgs field
is also a cosmological field.

I hope to report more detailed consequences of
the cosmological hypothesis in the near future.

I wish to thank my colleague, Professor K. Ma-
hanthappa, for his advice and criticisms.
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A model of weak interactions mediated by scalar bosons B*, B, and B° is presented.

The recent discovery' " of muonless neutrino scattering events has lent strong credence to the es-
sential correctness of some form of the Weinberg-Salam theory®'® of weak interactions. It seems par-
ticularly important to see now whether the data can be fitted by other theories as well; in this spirit
I wish to discuss a class of renormalizable models of weak interactions., They are basically elabora-

tions of models discussed years ago,” !

modified by a few new observations,

The characteristic feature is that the weak interactions are mediated by scalar bosons, B*, B°, and
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